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Classical Quicksort
p

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).
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Classical Quicksort
p

2 7 863 51 4

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively. Done.

Expected number of comparisons: 2n ln n −Θ(n).
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Dual-Pivot Quicksort
p

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.
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Dual-Pivot Quicksort
p q

= =

5 7 84 6312
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Dual-Pivot Quicksort
p q

= =

7 8633 51 421
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Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.
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Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems
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Dual-Pivot Quicksort: Some History

R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).
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YBB partitioning as program
1: procedure Y-Partition(A, p, q, left, right, posp, posq)
2: l← left + 1; g← right− 1; k← l; // pointers
3: while k ≤ g do
4: if A[k] < p then // small pivot first
5: swap A[k] and A[l]; l← l + 1;
6: else
7: if A[k] > q then // large pivot later
8: while A[g] > q do // small pivot first
9: g← g− 1;

10: if k < g then
11: if A[g] < p then // large pivot later
12: rotate3(A[g],A[k],A[l]); l← l + 1;
13: else
14: swap A[k] and A[g];

15: g← g− 1;

16: k← k + 1;

17: swap A[left] and A[l− 1];
18: swap A[right] and A[g + 1]; posp ← l− 1; posq ← g + 1;
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Dual-Pivot Quicksort: More History

Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←
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and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←
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Part 1

Model to capture comparison count in all dual-pivot algorithms

Unified analysis

“Asymptotically optimal” algorithms
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Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.
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Reduce Sorting Cost Cn to Partitioning Cost Pn

Fact (Hennequin (1991), simplified)

Average partitioning cost of E(Pn) = a · n + O(1) leads to average sorting
cost E(Cn) = 6

5a · n ln n + O(n).

(Proof: Uses generating function techniques. Btw: 6
5 = (12 + 1

3)−1.)

Slightly more general (also in Mart́ınez, Nebel, Wild (2014)):

If E(Pn) = a · n + O(n1−ε), then E(Cn) = 6
5a · n ln n + O(n).

(Proof uses Roura’s “Continuous Master Theorem” from 2001.)

So: What is the linear term a · n in E(Pn)?
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The Partitioning Cost

Must classify n − 2 entries x into three parts:

x < p p < x < q x > qp q

small , medium , or large

1 or 2 comparisons for x .

Unavoidable: 1 comparison for small/large x , 2 comparisons for medium x .

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare
x with p first or with q first.

Program text (YBB/Sedgewick/. . . ) implicitly defines strategy.
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Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

+1

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

p
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σµ σp q
⇒ 5 comparisons.
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Average Cost

For the average partitioning/classification cost E(Pn) we get:

E(Pn) ≈ 4/3n + “average number of extra comparisons”

extra :

small x compared to q first

large x compared to p first
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Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Cost of an Arbitrary Classification Tree
Average number of comparisons to larger/smaller pivot first, given s, `:

f q
s,` =

∑
v is q-node

pv = E(#(q-nodes reached) | s, `)

f p
s,` =

∑
v is p-node

pv = E(#(p-nodes reached) | s, `).

Lemma

Average comparison cost for classification:

E(Pn) =
4

3
n +

1(n
2

)
(n − 2)

∑
s+`≤n−2

(
f q
s,` · s + f p

s,` · `
)

+ O(n1−ε).

(Proof: Method of bounded differences:
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Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).
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Analyzing Strategies

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

f q
s,` = ` and f p

s,` = s + m = n − 2− `.

E(PYn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s`

n − 2
+

(s + m)`

n − 2

)
+ O(n1−ε)

=
19

12
n + O(n1−ε). Hence:

E(CYn ) =
6

5
· 19

12
n ln n + O(n) = 1.9n ln n + O(n).
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Analyzing Strategies

Strategy from Sedgewick’s Algorithm

f q
s,` = (n − 2) · s/(s + `) and f p

s,` = (n − 2) · `/(s + `)

E(PSn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s2

s + `
+

`2

s + `

)
+ O(n1−ε) =

16

9
n + O(n1−ε)

E(CSn ) =
6

5
· 16

9
n ln n + O(n) = 2.133.. · n ln n + O(n). (Also: (NW 2012).)

Simple improvement (also observed by Wild):
In Sedgewick’s algorithm, switch p and q in choice for first pivot.

E(CS
′

n ) =
6

5
· 14

9
n ln n + O(n) = 1.866.. · n ln n + O(n).
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Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).
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2
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E(CIn ) =
6

5
· 3

2
n ln n + O(n) = 1.8n ln n + O(n).
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Idealized, but gives lower bound:

No strategy can use fewer than 1.8n ln n − O(n) comparisons on average.

Implementation?

Random Sampling (read n3/4 entries) to estimate if s > ` or s ≤ `.
With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: 1.8n ln n + O(n).
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Part 2

Find a truly optimal algorithm.

Do an exact analysis.

(From (ADHKP16).)
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The Comparison-Optimal Dual-Pivot Quicksort Algorithm
Assume we are in round i/level i of the tree.

Strategy “Count”

−→

σ λ σ µ ? ? ? ?

Next element

Seen si−1 small and `i−1 large elements in

Classification Strategy:

`i−1 > si−1: compare with larger pivot first.

`i−1 ≤ si−1: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is 1.8n ln n + O(n).

(O(n) away from (idealized) optimal strategy.)

Now:
“Count” is optimal + exact average comparison count (ADHKP16/17).
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Proof idea for: “Count” is optimal (among all algorithms)

Distribution on {σ, µ, λ}-sequences generated by input and two random
pivots is given by:

Each fixed sequence with s many σ’s, m many µ’s, ` many λ’s, with
s + m + l = n − 2 appears with probability

1(n
2

) · s!m!`!

(n − 2)!
.

Reason:
Probability to have s many σ’s, m many µ’s, ` many λ’s is 1/

(n
2

)
.

Every sequence with s many σ’s, m many µ’s, ` many λ’s has the same
probability

( n−2
s,m,`

)
.
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Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.
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colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
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Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ σ

Why same distribution as “random permutation → pivots → relabel”?
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Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

In Round i :

Pr(new element is σ (small)) =
si−1 + 1

i + 2
.

(analogous formulas for medium/large elements.) Then: induction!
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“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2
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Exact analysis of “Count”

Goal

Analyze “Count” exactly.

Exact DP recurrence:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck)

(Wild 2013) showed how to solve this exactly, using
generating functions, if E(Pn) is given.
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Reminder: Generating functions.

Analytic function f : C→ C (with a certain convergence radius) can be
written f (z) =

∑
n≥0 anzn, represents sequence (a0, a1, a2, . . . ).

Example:

arctanh(z) =
1

2
(ln(1 + z)− ln(1− z))

=
1

2

∑
n≥1

(−1)n + 1

n
zn

=
∑
n≥1

[n odd]

n
zn.

Represents (0, 1, 0, 13 , 0,
1
5 , 0,

1
7 , ...)
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Exact analysis of “Count”

For comparison count of sorting: C (z) =
∑
n≥0

E(Cn)zn,

for comparison count of partitioning: P(z) =
∑
n≥0

E(Pn)zn.

(Wild 2013) showed: If E(Pn) and E(Cn) have generating functions
P(z) and C (z), then

C (z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3P ′′(s) ds dt.

Task: Find exact formula for E(Pn) (and its generating function)
for strategy “Count”.
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Exact analysis of “Count”

Define “random walk”:

Xi = si − `i , for 0 ≤ i ≤ n.

Classification Strategy, round i :

Xi−1 ≥ 0: compare with smaller pivot first.

Xi−1 < 0: compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify n′ = s + ` elements.
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Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.
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Counting Zeros in Random Walks

Number of zeros (without time n′): Zn′ := #{i | 0 ≤ i ≤ n′,Xi = 0}.

Can only have zeros at even positions i .
What is E(Zn′)?

E(Zn′) =
1

n′ + 1

bn′/2c∑
m=0

n′−m∑
`=m

(2m
m

)(n′−2m
`−m

)(n′
`

)
=

4

n′ + 1

∑
0≤k<`<dn′/2e

(n′
k

)(n′
`

) + [n′ even]
1

n′ + 1

(
2n

′( n′

n′/2

) − 1

)
+ 1.

(By generting function manipulations.)
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Counting Zeros in Random Walks

Central observation

For each even i , 0 ≤ i ≤ n′:

P(Xi = 0) =
1

i + 1
.

Hence, with linearity of expectation:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
=: Hodd

n′+1.

(Hence Hodd
n′+1 is equal to the two complicated sums!)

Background: Distribution of si is given by another Pólya urn experiment
(two colors, initially one ball of each color; it is known that such si is
uniform in {0, 1, . . . , i}).
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Exact Average Partitioning Cost

Have seen:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
= Hodd

n′+1.

For “moves down from zero” use symmetry: “up from zero” has same
probability as “down from zero”. No “down from zero” at position n′.
Thus:

E(#(extra comp’s) | s + ` = n′) = min(s, `) +
1

2

(
E(Zn′)−

[n′ even]

n′ + 1

)
.
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Exact Average Partitioning Cost
Back to general situation including medium elements.
Averaging over all

(n
2

)
pivot choices and adding 4

3(n − 2) + 1“forced”
comparisons yields:

E(Pct
n ) =

3n

2
+

1

2
Hodd

n − 19

8
− 3[n odd]

8n
− [n even]

8(n − 1)
.

We can “easily” write down the generating function, term by term:

Pct(z) = 3
2(1−z)2 + arctanh(z)

2(1−z) −
31z2

8(1−z) −
3+z
8 arctanh(z)− 3

2 −
25z
8 .

Now solving

C ct(z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3(Pct)′′(s) ds dt

by integration (for each term separately) gives C ct(z) and then a fully
explicit formula for E(C ct

n ).
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Expected number of comparisons:

E(Cn) =
9

5
nHn −

1

5
nHalt

n −
89

25
n +

67

40
Hn −

3

40
nHalt

n −
83

800
+

(−1)n

10

− [n even]

320

(
1

n − 3
+

3

n − 1

)
+

[n odd]

320

(
3

n − 2
+

1

n

)
,

with Halt
n =

∑
1≤i≤n

(−1)i
i (→ ln 2).

E(Cn) = 1.8n ln n + An + B ln n + C +
D

n
+ O

(
1

n2

)
,

where A ≈ −2.38, B = 1.675, C ≈ 1.82, D = 0.6875.
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Comparisons in Experiments
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Running Time Experiments
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“Pivot Sampling”

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: “Count” is optimal also in this case.

No exact analysis available.
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Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of {1, . . . , n}.

First k entries are pivots p1, . . . , pk .
Can ignore sorting of the pivots.
Classification: Split n − k remaining entries into k + 1 classes

. . . < p1 p1 p1 < . . . < p2 p2 p2 < . . . < p3 · · ·p3 pk < . . .pk

A0 A1 A2 Ak

Sizes of A0, . . . ,Ak : a0, . . . , ak .
Then sort classes recursively.
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Quicksort with k > 2 Pivots

(Hennequin, 1991) or Roura’s C.M.T.

If partitioning cost is E(Pn) = a · n + O(n1−ε), then

E(Cn) =
1

Hk+1 − 1
· a · n ln n + O(n),

for Hk+1 =
∑k+1

i=1 (1/i).

So again: Only design and analyze classification strategy.
Necessary comparisons: 1 for A0, Ak and 2 for A1, . . . ,Ak−1.
Count “extra” comparisons!
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Quicksort with k Pivots

p1

A0 p2

A1 A2

p2

p1

A0 A1

A2

+0

+0 +1 +1 +0

+0
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Classification Using Comparison Trees

p2

p1

A0 A1

p3

A2 A3

+1 +0 +0 +1

costT (a0, a1, a2, a3) = a0 + a3.

p1

A0 p2

A1 p3

A2 A3

+0

+0

+1 +2

costT (a0, a1, a2, a3) = a2 + 2a3.
Which tree is best depends on class sizes |A0|,. . . ,|Ak |.
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Good 3-Pivot Algorithm

Balanced Tree (Kushagra, López-Ortiz, Qiao, Munro 2014)

Always compare with p2 first.

p2

p1

A0 A1

p3

A2 A3

1.846n ln n comparisons.
With good implementation: Quite good practical performance
(even slightly better than YBB algorithm).
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Optimal: Count

Keep track of sizes |Ai
0|, |Ai

1|, . . . , |Ai
k | of elements seen by round i .

Use comparison tree optimal for estimated class sizes.

Determining optimal comparison tree is very expensive – usually
impractical.
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Comparison Counts: Summary
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Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.
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Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, J. Ian Munro:
Multi-Pivot Quicksort: Theory and Experiments. ALENEX 2014:
47-60

Charles A. R. Hoare, Quicksort, Comput. J. 5 (1962), no. 1, 10–15.

Pascal Hennequin: Analyse en moyenne d’algorithmes, tri rapide et
arbres de recherche. PhD Thesis, Palaiseau, Ecole polytechnique,
1991

Robert Sedgewick. Quicksort. PhD thesis, Stanford University,
Stanford, CA, May 1975. Stanford Computer Science Report
STAN-CS-75-492.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 50/51



Literature (cont.)

Vladimir Yaroslavskiy, Replacement of quicksort in java.util.arrays
with new dual-pivot quicksort,
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-
September/ 002630.html, 2009, Archived version of the discussion in
the OpenJDK mailing list.

Philippe Flajolet and Robert Sedgewick, Analytic combinatorics,
Cambridge University Press, Cambridge, 2009.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 51/51


	Memory Accesses in Multi-Pivot Quicksort

