## Optimal Dual-Pivot Quicksort Exact Comparison Count

Martin Dietzfelbinger

Technische Universität Ilmenau

Based on joint work with Martin Aumüller, Daniel Krenn, Clemens Heuberger, Helmut Prodinger

FCT, Bordeaux, September 11, 2017

## Classical Quicksort



Input: Distinct numbers  $a_1, \ldots, a_n$  (gross simplification!).

## Classical Quicksort



Input: Distinct numbers  $a_1, \ldots, a_n$  (gross simplification!).

1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .



1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .



- 1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.



- 1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.



- 1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

3. Sort the two subarrays recursively.

# Classical Quicksort



Input: Distinct numbers  $a_1, \ldots, a_n$  (gross simplification!).

- 1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

3. Sort the two subarrays recursively. Done.

# Classical Quicksort



Input: Distinct numbers  $a_1, \ldots, a_n$  (gross simplification!).

- 1. Choose a pivot p from  $\{a_1, \ldots, a_n\}$ .
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

3. Sort the two subarrays recursively. Done.

Expected number of comparisons:  $2n \ln n - \Theta(n)$ .



Input: Distinct numbers  $a_1, \ldots, a_n$ .



Input: Distinct numbers  $a_1, \ldots, a_n$ .

1. Choose two pivots p, q with p < q.



Input: Distinct numbers  $a_1, \ldots, a_n$ .

1. Choose **two** pivots p, q with p < q.



Input: Distinct numbers  $a_1, \ldots, a_n$ .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

$$\left( \begin{array}{c|c} q$$

Details: in the **program**.



Input: Distinct numbers  $a_1, \ldots, a_n$ .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

Details: in the **program**.



Input: Distinct numbers  $a_1, \ldots, a_n$ .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:



Details: in the **program**.

3. Sort the **three** subarrays recursively.



Input: Distinct numbers  $a_1, \ldots, a_n$ .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:



Details: in the **program**.

3. Sort the three subarrays recursively. Done.



Input: Distinct numbers  $a_1, \ldots, a_n$ .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:



Details: in the **program**.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??



Input: Distinct numbers  $a_1, \ldots, a_n$ .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:



Details: in the **program**.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like "swaps" or "running time".

• Input is a random permutation of  $\{1, \ldots, n\}$ 

- Input is a random permutation of  $\{1, \ldots, n\}$
- We count **comparisons**.

- Input is a random permutation of  $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count

- Input is a random permutation of  $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count
- Minimum (??) expected comparison count.

- Input is a random permutation of  $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count
- Minimum (??) expected comparison count.
- **Not** on optimizing running time.

- Input is a random permutation of  $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count
- Minimum (??) expected comparison count.
- Not on optimizing running time.
- Not on concrete (implemented) algorithms.

Part 1:

• A little history

- A little history
- Model for "classification"

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

Part 2:

• "Count": An absolutely optimal partitioning strategy

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- "Count": An absolutely optimal partitioning strategy
- Exact analysis of comparisons in "count"

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- "Count": An absolutely optimal partitioning strategy
- Exact analysis of comparisons in "count"
- Other cost measures (for two and more pivots)

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- "Count": An absolutely optimal partitioning strategy
- Exact analysis of comparisons in "count"
- Other cost measures (for two and more pivots)
- Some open problems
#### • R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical  $QS \rightarrow$  no further investigation.

#### • R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS  $\rightarrow$  no further investigation.

#### • P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with  $k \ge 1$  pivots (given as program).

- for k = 2, no improvements over  $2n \ln n$  found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

#### • R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS  $\rightarrow$  no further investigation.

#### • P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with  $k \ge 1$  pivots (given as program).

- for k = 2, no improvements over  $2n \ln n$  found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

Topic went to sleep.

#### • R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS  $\rightarrow$  no further investigation.

#### • P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with  $k \ge 1$  pivots (given as program).

- for k = 2, no improvements over  $2n \ln n$  found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

Topic went to sleep.

#### Java 7 (2009):

Classical quicksort is replaced by a dual-pivot quicksort variant, proposed (and carefully engineered) by **Yaroslavskiy**, **Bentley**, and **Bloch** (**YBB**).

#### • R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS  $\rightarrow$  no further investigation.

#### • P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with  $k \ge 1$  pivots (given as program).

- for k = 2, no improvements over  $2n \ln n$  found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

Topic went to sleep.

#### Java 7 (2009):

Classical quicksort is replaced by a dual-pivot quicksort variant, proposed (and carefully engineered) by **Yaroslavskiy**, **Bentley**, and **Bloch** (**YBB**).

**Experiments:** YBB algorithm around 10% faster than classical QS (keys are integers or reals).

# YBB partitioning as program

```
1: procedure Y-Partition(A, p, q, left, right, pos_p, pos_q)
 2: l \leftarrow left + 1; g \leftarrow right - 1; k \leftarrow 1; // pointers
 3: while k \leq g do
      if A[k] < p then
                             // small pivot first
 4:
            swap A[k] and A[1]; 1 \leftarrow 1 + 1;
 5:
        else
 6:
            if A[k] > q then
                                 // large pivot later
 7:
                while A[g] > q do // small pivot first
 8:
                   g \leftarrow g - 1;
 9:
                if k < g then
10:
                    if A[g] < p then // large pivot later
11:
                        rotate3(A[g], A[k], A[1]); 1 \leftarrow 1 + 1;
12:
13:
                    else
                        swap A[k] and A[g];
14:
                   g \leftarrow g - 1;
15:
    \mathtt{k} \leftarrow \mathtt{k} + 1:
16:
17: swap A[left] and A[1-1];
18: swap A[right] and A[g+1]; pos_p \leftarrow 1-1; pos_q \leftarrow g+1;
```

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

#### **Our questions about constants:**

• Why different?

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick: **2.13***n* ln n + O(n)

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?
- Best possible?

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?
- Best possible?  $\leftarrow$

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling):  $1.9n \ln n + O(n)$
- Sedgewick:  $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

**Distributional** analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?
- Best possible?  $\leftarrow$

• Model to capture comparison count in all dual-pivot algorithms

- Model to capture comparison count in all dual-pivot algorithms
- Unified analysis

- Model to capture comparison count in all dual-pivot algorithms
- Unified analysis
- "Asymptotically optimal" algorithms

- Model to capture comparison count in all dual-pivot algorithms
- Unified analysis
- "Asymptotically optimal" algorithms

Dual-pivot quicksort recurrence: Let

 $C_n$  = number of comparisons for sorting *n* elements

 $P_n$  = number of comparisons for partitioning *n* elements

Dual-pivot quicksort recurrence: Let

 $C_n$  = number of comparisons for sorting *n* elements

 $P_n$  = number of comparisons for partitioning *n* elements

Then:

Dual-pivot quicksort recurrence: Let

 $C_n$  = number of comparisons for sorting *n* elements  $P_n$  = number of comparisons for partitioning *n* elements

Then:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k).$$

Dual-pivot quicksort recurrence: Let

 $C_n$  = number of comparisons for sorting *n* elements  $P_n$  = number of comparisons for partitioning *n* elements

Then:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k).$$

(Recall  $C_n = \mathbb{E}(P_n) + \frac{2}{n} \sum_{k=1}^{n-1} \mathbb{E}(C_k)$  for one pivot.)

Dual-pivot quicksort recurrence: Let

 $C_n$  = number of comparisons for sorting *n* elements  $P_n$  = number of comparisons for partitioning *n* elements

Then:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k).$$

(Recall  $C_n = \mathbb{E}(P_n) + \frac{2}{n} \sum_{k=1}^{n-1} \mathbb{E}(C_k)$  for one pivot.)

Hennequin (1991) solves recurrence for "toll function"  $\mathbb{E}(P_n) = an + b$  (and much more).

Wild/Nebel/Neininger (2012/2015) solve it for  $P_n$  induced by (simplified version of) YBB.

#### Fact (Hennequin (1991), simplified)

Average partitioning cost of  $\mathbb{E}(P_n) = a \cdot n + O(1)$  leads to average sorting cost  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

(Proof: Uses generating function techniques. Btw:  $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$ .)

#### Fact (Hennequin (1991), simplified)

Average partitioning cost of  $\mathbb{E}(P_n) = a \cdot n + O(1)$  leads to average sorting cost  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

(Proof: Uses generating function techniques. Btw:  $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$ .) Slightly more general (also in Martínez, Nebel, Wild (2014)):

If  $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$ , then  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

Fact (Hennequin (1991), simplified)

Average partitioning cost of  $\mathbb{E}(P_n) = a \cdot n + O(1)$  leads to average sorting cost  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

(Proof: Uses generating function techniques. Btw:  $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$ .) Slightly more general (also in Martínez, Nebel, Wild (2014)):

If 
$$\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$$
, then  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

(Proof uses Roura's "Continuous Master Theorem" from 2001.)

Fact (Hennequin (1991), simplified)

Average partitioning cost of  $\mathbb{E}(P_n) = a \cdot n + O(1)$  leads to average sorting cost  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

(Proof: Uses generating function techniques. Btw:  $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$ .) Slightly more general (also in Martínez, Nebel, Wild (2014)):

If 
$$\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$$
, then  $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$ .

(Proof uses Roura's "Continuous Master Theorem" from 2001.)

**So:** What is the linear term  $a \cdot n$  in  $\mathbb{E}(P_n)$ ?

Must **classify** n - 2 entries x into three parts:



Must **classify** n - 2 entries x into three parts:



1 or 2 comparisons for x.

Must **classify** n - 2 entries x into three parts:



1 or 2 comparisons for x.

Unavoidable: 1 comparison for small/large x, 2 comparisons for medium x.

Must **classify** n - 2 entries x into three parts:



1 or 2 comparisons for x.

Unavoidable: 1 comparison for small/large x, 2 comparisons for medium x.

Extra: small x compared with q first and large x compared with p first.
# The Partitioning Cost

Must classify n - 2 entries x into three parts:



1 or 2 comparisons for x.

Unavoidable: 1 comparison for small/large x, 2 comparisons for medium x.

Extra: small x compared with q first and large x compared with p first.

**Partitioning strategy** determines for next element x whether to compare x with p first or with q first.

**Program text** (YBB/Sedgewick/...) *implicitly* defines strategy.



















# Average Cost

For the average partitioning/classification cost  $\mathbb{E}(P_n)$  we get:

 $\mathbb{E}(P_n) \approx 4/3n +$  "average number of extra comparisons"

extra :

- small x compared to q first
- large x compared to p first

v: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements.

(Apart from that: input random.)

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements.

(Apart from that: input random.)

•  $p_v$ : probability that node v is reached.

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.
- $\ell_v$ : number of "large" elements seen on path to v.

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.
- $\ell_v$ : number of "large" elements seen on path to v.

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.
- $\ell_v$ : number of "large" elements seen on path to v.

If v is labelled  $\mathbf{p}$ , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.
- $\ell_v$ : number of "large" elements seen on path to v.

If v is labelled  $\mathbf{p}$ , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

If v is labelled **q**, then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{s-s_{v}}{n-\operatorname{level}(v)} \approx p_{v} \cdot rac{s}{n-2}.$$

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.
- $\ell_v$ : number of "large" elements seen on path to v.

If v is labelled  $\mathbf{p}$ , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

" $\approx$ " can be justified up to small error.

If v is labelled  $\mathbf{q}$ , then contribution to average number of extra comparisons is:

$$p_v \cdot rac{s-s_v}{n-\operatorname{level}(v)} \approx p_v \cdot rac{s}{n-2}.$$

*v*: node in classification tree.

Fix s,  $\ell$ , the number of small resp. large elements. (Apart from that: input random.)

- $p_v$ : probability that node v is reached.
- $s_v$ : number of "small" elements seen on path to v.
- $\ell_v$ : number of "large" elements seen on path to v.

If v is labelled  $\mathbf{p}$ , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

" $\approx$ " can be justified up to small error.

If v is labelled  $\mathbf{q}$ , then contribution to average number of extra comparisons is:

$$p_v \cdot rac{s-s_v}{n-\operatorname{level}(v)} \approx p_v \cdot rac{s}{n-2}.$$

Average number of comparisons to larger/smaller pivot first, given s,  $\ell$ :

$$egin{aligned} f_{s,\ell}^{\mathsf{q}} &= \sum_{v ext{ is q-node}} p_v = \mathbb{E}(\#( ext{q-nodes reached}) \mid s, \ell) \ f_{s,\ell}^{\mathsf{p}} &= \sum_{v ext{ is p-node}} p_v = \mathbb{E}(\#( ext{p-nodes reached}) \mid s, \ell). \end{aligned}$$

Average number of comparisons to larger/smaller pivot first, given s,  $\ell$ :

$$\begin{aligned} f_{s,\ell}^{\mathsf{q}} &= \sum_{v \text{ is q-node}} p_v = \mathbb{E}(\#(\mathsf{q-nodes reached}) \mid s, \ell) \\ f_{s,\ell}^{\mathsf{p}} &= \sum p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell). \end{aligned}$$

$$f_{s,\ell}^{\mathsf{p}} = \sum_{v \text{ is p-node}} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s,$$

#### Lemma

Average comparison cost for classification:

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^q \cdot s + f_{s,\ell}^p \cdot \ell\right) + O(n^{1-\varepsilon}).$$

Average number of comparisons to larger/smaller pivot first, given s,  $\ell$ :

$$\begin{array}{l} f_{s,\ell}^{\mathsf{q}} = \sum_{v \text{ is q-node}} p_v = \mathbb{E}(\#(\mathsf{q-nodes reached}) \mid s, \ell) \\ \\ f_{s,\ell}^{\mathsf{p}} = \sum_{v \in \mathbb{P}_v} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell). \end{array}$$

$$f_{s,\ell}^{\mathsf{p}} = \sum_{v \text{ is p-node}} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell).$$

#### Lemma

Average comparison cost for classification:

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^q \cdot s + f_{s,\ell}^p \cdot \ell\right) + O(n^{1-\varepsilon}).$$

(*Proof*: Method of bounded differences:

Behaviour of differences as expected w.h.p. in most levels of the tree.)

Average number of comparisons to larger/smaller pivot first, given s,  $\ell$ :

$$\begin{array}{l} f_{s,\ell}^{\mathsf{q}} = \sum_{v \text{ is q-node}} p_v = \mathbb{E}(\#(\mathsf{q-nodes reached}) \mid s, \ell) \\ \\ f_{s,\ell}^{\mathsf{p}} = \sum_{v \in \mathbb{P}_v} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell). \end{array}$$

$$f_{s,\ell}^{\mathsf{p}} = \sum_{v \text{ is p-node}} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell).$$

#### Lemma

Average comparison cost for classification:

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^q \cdot s + f_{s,\ell}^p \cdot \ell\right) + O(n^{1-\varepsilon}).$$

(*Proof*: Method of bounded differences:

Behaviour of differences as expected w.h.p. in most levels of the tree.)

#### **Oblivious Strategies**

#### **Oblivious Strategies**

Ignore results of previous comparisons, all nodes on one level use the same pivot first.

Examples: Always q first

#### **Oblivious Strategies**



#### **Oblivious Strategies**



#### **Oblivious Strategies**

Examples: Always q first, Alternate, Random.
$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

#### **Oblivious Strategies**

Examples: Always q first, Alternate, Random.
$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$
$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

#### **Oblivious Strategies**

Examples: Always q first, Alternate, Random.  

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

$$= \frac{5}{3}n + O(n^{1-\varepsilon}).$$

#### **Oblivious Strategies**

Examples: Always q first , Alternate , Random .  

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

$$= \frac{5}{3}n + O(n^{1-\varepsilon}).$$
Hence:

#### **Oblivious Strategies**

Examples: Always q first , Alternate , Random .  

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

$$= \frac{5}{3}n + O(n^{1-\varepsilon}). \qquad \text{Hence:}$$

$$\mathbb{E}(C_n) = \frac{6}{5} \cdot \frac{5}{3}n \ln n + O(n) = 2n \ln n + O(n).$$

#### Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and  $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$ .

#### Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and  $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$ .

$$\mathbb{E}(P_n^{\mathcal{Y}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s\ell}{n-2} + \frac{(s+m)\ell}{n-2}\right) + O(n^{1-\varepsilon})$$

#### Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and  $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$ .

$$\mathbb{E}(P_n^{\mathcal{Y}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s\ell}{n-2} + \frac{(s+m)\ell}{n-2}\right) + O(n^{1-\varepsilon})$$
$$= \frac{19}{12}n + O(n^{1-\varepsilon}).$$
#### Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and  $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$ .

$$\mathbb{E}(P_n^{\mathcal{Y}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s\ell}{n-2} + \frac{(s+m)\ell}{n-2}\right) + O(n^{1-\varepsilon})$$
$$= \frac{19}{12}n + O(n^{1-\varepsilon}). \qquad \text{Hence:}$$

$$\mathbb{E}(C_n^{\mathcal{Y}}) = \frac{6}{5} \cdot \frac{19}{12} n \ln n + O(n) = 1.9 n \ln n + O(n).$$

#### Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and  $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$ 

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and  $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$ 

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left( \frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell} \right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and  $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$ 

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell}\right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

 $\mathbb{E}(C_n^{\mathcal{S}}) = \frac{6}{5} \cdot \frac{16}{9} n \ln n + O(n) = 2.133.. \cdot n \ln n + O(n). \text{ (Also: (NW 2012).)}$ 

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and  $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$ 

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left( \frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell} \right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

 $\mathbb{E}(C_n^{\mathcal{S}}) = \frac{6}{5} \cdot \frac{16}{9} n \ln n + O(n) = 2.133.. \cdot n \ln n + O(n). \text{ (Also: (NW 2012).)}$ 

Simple improvement (also observed by Wild): In Sedgewick's algorithm, switch *p* and *q* in choice for first pivot.

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and  $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$ 

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left( \frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell} \right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

 $\mathbb{E}(C_n^{\mathcal{S}}) = \frac{6}{5} \cdot \frac{16}{9} n \ln n + O(n) = 2.133... \cdot n \ln n + O(n). \text{ (Also: (NW 2012).)}$ 

Simple improvement (also observed by Wild): In Sedgewick's algorithm, switch *p* and *q* in choice for first pivot.

$$\mathbb{E}(C_n^{S'}) = \frac{6}{5} \cdot \frac{14}{9} n \ln n + O(n) = 1.866.. \cdot n \ln n + O(n).$$

**Assume:** Given input and pivots, an oracle tells us whether or not  $\ell > s$ .

**Assume:** Given input and pivots, an oracle tells us whether or not  $\ell > s$ .

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left( f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

#### **Assume:** Given input and pivots, an oracle tells us whether or not $\ell > s$ .

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left( f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

#### Strategy

•  $\ell > s$ : Compare all elements to larger pivot first  $(f_{s,\ell}^{q} = n - 2)$ .

#### **Assume:** Given input and pivots, an oracle tells us whether or not $\ell > s$ .

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left( f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

#### Strategy

- $\ell > s$ : Compare all elements to larger pivot first  $(f_{s,\ell}^{q} = n 2)$ .
- $\ell \leq s$ : Compare all elements to smaller pivot first  $(f_{s,\ell}^{q} = 0)$ .

#### **Assume:** Given input and pivots, an oracle tells us whether or not $\ell > s$ .

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left( f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

#### Strategy

- $\ell > s$ : Compare all elements to larger pivot first  $(f_{s,\ell}^{q} = n 2)$ .
- $\ell \leq s$ : Compare all elements to smaller pivot first  $(f_{s,\ell}^{q} = 0)$ .

$$\mathbb{E}(P_n^{\mathcal{I}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}}\sum_{s+\ell \le n-2}\min\{s,\ell\} + O(n^{1-\varepsilon}) = \frac{3}{2}n + O(n^{1-\varepsilon}).$$

#### **Assume:** Given input and pivots, an oracle tells us whether or not $\ell > s$ .

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left( f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

#### Strategy

- $\ell > s$ : Compare all elements to larger pivot first  $(f_{s,\ell}^{q} = n 2)$ .
- $\ell \leq s$ : Compare all elements to smaller pivot first  $(f_{s,\ell}^{q} = 0)$ .

$$\mathbb{E}(P_n^{\mathcal{I}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \min\{s,\ell\} + O(n^{1-\varepsilon}) = \frac{3}{2}n + O(n^{1-\varepsilon}).$$
$$\mathbb{E}(C_n^{\mathcal{I}}) = \frac{6}{5} \cdot \frac{3}{2}n \ln n + O(n) = 1.8n \ln n + O(n).$$

No strategy can use fewer than  $1.8n \ln n - O(n)$  comparisons on average.

No strategy can use fewer than  $1.8n \ln n - O(n)$  comparisons on average.

Implementation?

No strategy can use fewer than  $1.8n \ln n - O(n)$  comparisons on average.

Implementation?

Random Sampling (read  $n^{3/4}$  entries) to estimate if  $s > \ell$  or  $s \leq \ell$ .

No strategy can use fewer than  $1.8n \ln n - O(n)$  comparisons on average.

Implementation?

Random Sampling (read  $n^{3/4}$  entries) to estimate if  $s > \ell$  or  $s \le \ell$ . With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

No strategy can use fewer than  $1.8n \ln n - O(n)$  comparisons on average.

Implementation?

Random Sampling (read  $n^{3/4}$  entries) to estimate if  $s > \ell$  or  $s \le \ell$ . With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm:  $1.8n \ln n + O(n)$ .

• Find a *truly optimal* algorithm.

- Find a *truly optimal* algorithm.
- Do an exact analysis.

- Find a *truly optimal* algorithm.
- Do an exact analysis.

(From (ADHKP16).)

Assume we are in round i/level i of the tree.



Seen  $s_{i-1}$  small and  $\ell_{i-1}$  large elements in

Assume we are in round i/level i of the tree.



Seen  $s_{i-1}$  small and  $\ell_{i-1}$  large elements in  $\square$ 

#### **Classification Strategy:**

- $\ell_{i-1} > s_{i-1}$ : compare with larger pivot first.
- $\ell_{i-1} \leq s_{i-1}$ : compare with smaller pivot first.

Assume we are in round i/level i of the tree.



Seen  $s_{i-1}$  small and  $\ell_{i-1}$  large elements in

#### **Classification Strategy:**

- $\ell_{i-1} > s_{i-1}$ : compare with larger pivot first.
- $\ell_{i-1} \leq s_{i-1}$ : compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is  $1.8n \ln n + O(n)$ . (O(n) away from (idealized) optimal strategy.)

Assume we are in round i/level i of the tree.



Seen  $s_{i-1}$  small and  $\ell_{i-1}$  large elements in

#### **Classification Strategy:**

- $\ell_{i-1} > s_{i-1}$ : compare with larger pivot first.
- $\ell_{i-1} \leq s_{i-1}$ : compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is  $1.8n \ln n + O(n)$ .

(O(n) away from (idealized) optimal strategy.)

#### Now:

"Count" is optimal + exact average comparison count (ADHKP16/17).

### Proof idea for: "Count" is optimal (among all algorithms)

Distribution on  $\{\sigma, \mu, \lambda\}$ -sequences generated by input and two random pivots is given by:

Each fixed sequence with s many  $\sigma$ 's, m many  $\mu$ 's,  $\ell$  many  $\lambda$ 's, with s + m + l = n - 2 appears with probability

 $\frac{1}{\binom{n}{2}}\cdot\frac{s!m!\ell!}{(n-2)!}.$ 

## Proof idea for: "Count" is optimal (among all algorithms)

Distribution on  $\{\sigma, \mu, \lambda\}$ -sequences generated by input and two random pivots is given by:

Each fixed sequence with s many  $\sigma$ 's, m many  $\mu$ 's,  $\ell$  many  $\lambda$ 's, with s + m + l = n - 2 appears with probability

 $\frac{1}{\binom{n}{2}} \cdot \frac{s!m!\ell!}{(n-2)!}.$ 

Reason:

Probability to have s many  $\sigma$ 's, m many  $\mu$ 's,  $\ell$  many  $\lambda$ 's is  $1/\binom{n}{2}$ . Every sequence with s many  $\sigma$ 's, m many  $\mu$ 's,  $\ell$  many  $\lambda$ 's has the same probability  $\binom{n-2}{s,m,\ell}$ .





Put one light green ball, one green ball, one dark green ball in urn.



Put one light green ball, one green ball, one dark green ball in urn.
Round i = 1, ..., n - 2:



Put one light green ball, one green ball, one dark green ball in urn.

**2** Round 
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random.



Put one light green ball, one green ball, one dark green ball in urn.

**2** Round 
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random.



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color c, put it back,





O Put one light green ball, one green ball, one dark green ball in urn.

**2** Round i = 1, ..., n - 2:

Choose ball from urn at random. Take down its color c, put it back,





Put one light green ball, one green ball, one dark green ball in urn.

**2** Round 
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color c, put it back, and put another ball of the same color in the urn.

 $\lambda$ 



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color c, put it back, and put another ball of the same color in the urn.

 $\lambda$


O Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

$$\lambda$$
  $\sigma$ 



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

$$\lambda$$
  $\sigma$ 



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

$$\lambda$$
  $\sigma$ 



O Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

$$\left[ egin{array}{ccc} \lambda & \sigma & \mu \end{array} 
ight]$$



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

$$\left[ egin{array}{cccc} \lambda & \sigma & \mu \end{array} 
ight]$$



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

$$\left[ egin{array}{ccc} \lambda & \sigma & \mu \end{array} 
ight]$$



O Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color *c*, put it back, and put another ball of the same color in the urn.

$$\lambda$$
  $\sigma$   $\mu$   $\sigma$ 

Why same distribution as "random permutation  $\rightarrow$  pivots  $\rightarrow$  relabel"?



Put one light green ball, one green ball, one dark green ball in urn.

2 Round 
$$i = 1, ..., n - 2$$
:



Put one light green ball, one green ball, one dark green ball in urn.

**2** Round i = 1, ..., n - 2:

Choose ball from urn at random. Take down its color c, put it back, and put another ball of the same color in the urn.

In Round *i*:

$$\Pr(\mathsf{new} \ \mathsf{element} \ \mathsf{is} \ \sigma \ (\mathsf{small})) = rac{s_{i-1}+1}{i+2}.$$

(analogous formulas for medium/large elements.) Then: induction!

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

*Proof*: Assume e.g.  $s_{i-1} \ge \ell_{i-1}$ .

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

*Proof*: Assume e.g.  $s_{i-1} \ge \ell_{i-1}$ . "Count" compares with small pivot first.

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

*Proof*: Assume e.g.  $s_{i-1} \ge \ell_{i-1}$ . "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) =  $\frac{\ell_{i-1}+1}{i+2}$ .

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

*Proof*: Assume e.g.  $s_{i-1} \ge \ell_{i-1}$ . "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) =  $\frac{\ell_{i-1}+1}{i+2}$ .

If S (based on full history up to i - 1, even using randomness) uses small pivot first, no difference.

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

*Proof*: Assume e.g.  $s_{i-1} \ge \ell_{i-1}$ . "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) =  $\frac{\ell_{i-1}+1}{i+2}$ .

If S (based on full history up to i - 1, even using randomness) uses small pivot first, no difference.

If S takes large pivot first:

$$\Pr(\mathcal{S} \text{ gets extra comparison in step } i) = \frac{s_{i-1}+1}{i+2},$$

**Claim:** Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

*Proof*: Assume e.g.  $s_{i-1} \ge \ell_{i-1}$ . "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) =  $\frac{\ell_{i-1}+1}{i+2}$ .

If S (based on full history up to i - 1, even using randomness) uses small pivot first, no difference.

If S takes large pivot first:

$$\Pr(\mathcal{S} \text{ gets extra comparison in step } i) = \frac{s_{i-1}+1}{i+2},$$

at least as big as the probability for "Count".

### Goal

Analyze "Count" exactly.

### Goal

Analyze "Count" exactly.

Exact DP recurrence:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k)$$

### Goal

Analyze "Count" exactly.

Exact DP recurrence:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k) \mathbb{E}(C_k)$$

(Wild 2013) showed how to solve this exactly, using **generating functions**, if  $\mathbb{E}(P_n)$  is given.

Analytic function  $f : \mathbb{C} \to \mathbb{C}$  (with a certain convergence radius) can be written  $f(z) = \sum_{n>0} a_n z^n$ , represents sequence  $(a_0, a_1, a_2, ...)$ .

Analytic function  $f: \mathbb{C} \to \mathbb{C}$  (with a certain convergence radius) can be written  $f(z) = \sum_{n \ge 0} a_n z^n$ , represents sequence  $(a_0, a_1, a_2, ...)$ .

Example:

$$\operatorname{arctanh}(z) = \frac{1}{2} (\ln(1+z) - \ln(1-z))$$
$$= \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^n + 1}{n} z^n$$
$$= \sum_{n \ge 1} \frac{[n \text{ odd}]}{n} z^n.$$

Analytic function  $f: \mathbb{C} \to \mathbb{C}$  (with a certain convergence radius) can be written  $f(z) = \sum_{n \ge 0} a_n z^n$ , represents sequence  $(a_0, a_1, a_2, ...)$ .

Example:

$$\operatorname{arctanh}(z) = \frac{1}{2} (\ln(1+z) - \ln(1-z))$$
$$= \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^n + 1}{n} z^n$$
$$= \sum_{n \ge 1} \frac{[n \text{ odd}]}{n} z^n.$$

Represents  $(0, 1, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \frac{1}{7}, ...)$ 

Analytic function  $f: \mathbb{C} \to \mathbb{C}$  (with a certain convergence radius) can be written  $f(z) = \sum_{n \ge 0} a_n z^n$ , represents sequence  $(a_0, a_1, a_2, ...)$ .

Example:

$$\operatorname{arctanh}(z) = \frac{1}{2} (\ln(1+z) - \ln(1-z))$$
$$= \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^n + 1}{n} z^n$$
$$= \sum_{n \ge 1} \frac{[n \text{ odd}]}{n} z^n.$$

Represents  $(0, 1, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \frac{1}{7}, ...)$ 

For comparison count of sorting:  $C(z) = \sum_{n \ge 0} \mathbb{E}(C_n) z^n$ , for comparison count of partitioning:  $P(z) = \sum_{n \ge 0} \mathbb{E}(P_n) z^n$ .

(Wild 2013) showed: If  $\mathbb{E}(P_n)$  and  $\mathbb{E}(C_n)$  have generating functions P(z) and C(z), then

$$C(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 P''(s) \, ds \, dt.$$

For comparison count of sorting:  $C(z) = \sum_{n \ge 0} \mathbb{E}(C_n) z^n$ , for comparison count of partitioning:  $P(z) = \sum_{n \ge 0} \mathbb{E}(P_n) z^n$ .

(Wild 2013) showed: If  $\mathbb{E}(P_n)$  and  $\mathbb{E}(C_n)$  have generating functions P(z) and C(z), then

$$C(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 P''(s) \, ds \, dt.$$

Task: Find exact formula for  $\mathbb{E}(P_n)$  (and its generating function) for strategy "Count".

For comparison count of sorting:  $C(z) = \sum_{n \ge 0} \mathbb{E}(C_n) z^n$ , for comparison count of partitioning:  $P(z) = \sum_{n \ge 0} \mathbb{E}(P_n) z^n$ .

(Wild 2013) showed: If  $\mathbb{E}(P_n)$  and  $\mathbb{E}(C_n)$  have generating functions P(z) and C(z), then

$$C(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 P''(s) \, ds \, dt.$$

Task: Find exact formula for  $\mathbb{E}(P_n)$  (and its generating function) for strategy "Count".

Define "random walk":

$$X_i = s_i - \ell_i$$
, for  $0 \le i \le n$ .

Define "random walk":

$$X_i = s_i - \ell_i$$
, for  $0 \le i \le n$ .

#### Classification Strategy, round *i*:

- $X_{i-1} \ge 0$ : compare with smaller pivot first.
- $X_{i-1} < 0$ : compare with larger pivot first.

Define "random walk":

$$X_i = s_i - \ell_i$$
, for  $0 \le i \le n$ .

#### Classification Strategy, round *i*:

- $X_{i-1} \ge 0$ : compare with smaller pivot first.
- $X_{i-1} < 0$ : compare with larger pivot first.

#### First study simplified situation, ignore medium elements.

Define "random walk":

$$X_i = s_i - \ell_i$$
, for  $0 \le i \le n$ .

#### Classification Strategy, round *i*:

- $X_{i-1} \ge 0$ : compare with smaller pivot first.
- $X_{i-1} < 0$ : compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify  $n' = s + \ell$  elements.

### Random Walks & Analysis of Count



### Random Walks & Analysis of Count



### Random Walks & Analysis of Count






#### $X_i$ 3 ∔ 2 1 $\sigma$ 0 $\rightarrow i$ n' -1-2-3 $\lambda$ $\lambda \quad \lambda \quad \lambda \quad \sigma$ $\lambda \quad \lambda$ $\lambda$ $\sigma$ $\sigma$ $\sigma$ $\lambda$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$

#### $X_i$ 3 ∔ 2 1 $\sigma$ 0 $\rightarrow i$ n' -1-2-3 $\lambda$ $\lambda$ $\lambda$ $\sigma$ $\lambda \quad \lambda$ $\lambda$ $\sigma$ $\lambda$ $\sigma$ $\sigma$ $\lambda$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$

























**Observation**: Extra comparison in round  $i \Leftrightarrow$ 



**Observation**: Extra comparison in round  $i \Leftrightarrow$ move towards zero in  $X_{i-1} \to X_i$ 



**Observation**: Extra comparison in round  $i \Leftrightarrow$ move towards zero in  $X_{i-1} \to X_i$  or move down from a zero.



**Observation**: Extra comparison in round  $i \Leftrightarrow$ move towards zero in  $X_{i-1} \to X_i$  or move down from a zero. Easy: Exactly min $\{s, \ell\}$  many "move towards zero" situations.

Number of zeros (without time n'):  $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$ .

Number of zeros (without time n'):  $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$ .

Can only have zeros at **even** positions *i*. What is  $\mathbb{E}(Z_{n'})$ ?

Number of zeros (without time n'):  $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$ . Can only have zeros at **even** positions *i*. What is  $\mathbb{E}(Z_{n'})$ ?

$$\mathbb{E}(Z_{n'}) = \frac{1}{n'+1} \sum_{m=0}^{\lfloor n'/2 \rfloor} \sum_{\ell=m}^{n'-m} \frac{\binom{2m}{m} \binom{n'-2m}{\ell-m}}{\binom{n'}{\ell}}$$
$$= \frac{4}{n'+1} \sum_{0 \le k < \ell < \lceil n'/2 \rceil} \frac{\binom{n'}{k}}{\binom{n'}{\ell}} + [n' \text{ even}] \frac{1}{n'+1} \left(\frac{2^{n'}}{\binom{n'}{k}} - 1\right) + 1.$$

Number of zeros (without time n'):  $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$ . Can only have zeros at **even** positions *i*. What is  $\mathbb{E}(Z_{n'})$ ?

$$\mathbb{E}(Z_{n'}) = \frac{1}{n'+1} \sum_{m=0}^{\lfloor n'/2 \rfloor} \sum_{\ell=m}^{n'-m} \frac{\binom{2m}{m} \binom{n'-2m}{\ell-m}}{\binom{n'}{\ell}}$$
$$= \frac{4}{n'+1} \sum_{0 \le k < \ell < \lceil n'/2 \rceil} \frac{\binom{n'}{k}}{\binom{n'}{\ell}} + [n' \text{ even}] \frac{1}{n'+1} \left(\frac{2^{n'}}{\binom{n'}{k}} - 1\right) + 1.$$

(By generting function manipulations.)

Number of zeros (without time n'):  $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$ . Can only have zeros at **even** positions *i*. What is  $\mathbb{E}(Z_{n'})$ ?

$$\mathbb{E}(Z_{n'}) = \frac{1}{n'+1} \sum_{m=0}^{\lfloor n'/2 \rfloor} \sum_{\ell=m}^{n'-m} \frac{\binom{2m}{m} \binom{n'-2m}{\ell-m}}{\binom{n'}{\ell}}$$
$$= \frac{4}{n'+1} \sum_{0 \le k < \ell < \lceil n'/2 \rceil} \frac{\binom{n'}{k}}{\binom{n'}{\ell}} + [n' \text{ even}] \frac{1}{n'+1} \left(\frac{2^{n'}}{\binom{n'}{k}} - 1\right) + 1.$$

(By generting function manipulations.)

Central observation

For each even *i*,  $0 \le i \le n'$ :

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Central observation

For each even *i*,  $0 \le i \le n'$ :

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

Central observation

For each even *i*,  $0 \le i \le n'$ :

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

(Hence  $\mathcal{H}_{n'+1}^{\text{odd}}$  is equal to the two complicated sums!)

Central observation

For each even *i*,  $0 \le i \le n'$ :

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

(Hence  $\mathcal{H}_{n'+1}^{\text{odd}}$  is equal to the two complicated sums!)

Background: Distribution of  $s_i$  is given by another Pólya urn experiment (two colors, initially one ball of each color; it is known that such  $s_i$  is uniform in  $\{0, 1, \ldots, i\}$ ).

Central observation

For each even *i*,  $0 \le i \le n'$ :

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

(Hence  $\mathcal{H}_{n'+1}^{\text{odd}}$  is equal to the two complicated sums!)

Background: Distribution of  $s_i$  is given by another Pólya urn experiment (two colors, initially one ball of each color; it is known that such  $s_i$  is uniform in  $\{0, 1, \ldots, i\}$ ).

Have seen:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \\ i \text{ even}}} \frac{1}{i+1} = \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

Have seen:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \\ i \text{ even}}} \frac{1}{i+1} = \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

For "moves down from zero" use symmetry: "up from zero" has same probability as "down from zero". No "down from zero" at position n'. Thus:

$$\mathbb{E}(\#(\mathsf{extra comp's}) \mid s + \ell = n') = \min(s, \ell) + \frac{1}{2} \left( \mathbb{E}(Z_{n'}) - \frac{[n' \text{ even}]}{n' + 1} \right).$$

Back to general situation including medium elements. Averaging over all  $\binom{n}{2}$  pivot choices and adding  $\frac{4}{3}(n-2) + 1$  "forced" comparisons yields:

$$\mathbb{E}(P_n^{\rm ct}) = \frac{3n}{2} + \frac{1}{2}\mathcal{H}_n^{\rm odd} - \frac{19}{8} - \frac{3[n \text{ odd}]}{8n} - \frac{[n \text{ even}]}{8(n-1)}.$$

Back to general situation including medium elements. Averaging over all  $\binom{n}{2}$  pivot choices and adding  $\frac{4}{3}(n-2) + 1$  "forced" comparisons yields:

$$\mathbb{E}(P_n^{\rm ct}) = \frac{3n}{2} + \frac{1}{2}\mathcal{H}_n^{\rm odd} - \frac{19}{8} - \frac{3[n \text{ odd}]}{8n} - \frac{[n \text{ even}]}{8(n-1)}.$$

We can "easily" write down the generating function, term by term:

$$P^{\mathsf{ct}}(z) = \frac{3}{2(1-z)^2} + \frac{\arctan(z)}{2(1-z)} - \frac{31z^2}{8(1-z)} - \frac{3+z}{8} \operatorname{arctanh}(z) - \frac{3}{2} - \frac{25z}{8}.$$

Back to general situation including medium elements. Averaging over all  $\binom{n}{2}$  pivot choices and adding  $\frac{4}{3}(n-2) + 1$  "forced" comparisons yields:

$$\mathbb{E}(P_n^{\rm ct}) = \frac{3n}{2} + \frac{1}{2}\mathcal{H}_n^{\rm odd} - \frac{19}{8} - \frac{3[n \text{ odd}]}{8n} - \frac{[n \text{ even}]}{8(n-1)}.$$

We can "easily" write down the generating function, term by term:

$$P^{\mathsf{ct}}(z) = \frac{3}{2(1-z)^2} + \frac{\arctan(z)}{2(1-z)} - \frac{31z^2}{8(1-z)} - \frac{3+z}{8} \operatorname{arctanh}(z) - \frac{3}{2} - \frac{25z}{8}.$$

Now solving

$$C^{\rm ct}(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 (P^{\rm ct})''(s) \, ds \, dt$$

by integration (for each term separately) gives  $C^{ct}(z)$  and then a fully explicit formula for  $\mathbb{E}(C_n^{ct})$ .

## Expected number of comparisons:

$$\mathbb{E}(C_n) = \frac{9}{5}nH_n - \frac{1}{5}nH_n^{\text{alt}} - \frac{89}{25}n + \frac{67}{40}H_n - \frac{3}{40}nH_n^{\text{alt}} - \frac{83}{800} + \frac{(-1)^n}{10} \\ - \frac{[n \text{ even}]}{320}\left(\frac{1}{n-3} + \frac{3}{n-1}\right) + \frac{[n \text{ odd}]}{320}\left(\frac{3}{n-2} + \frac{1}{n}\right),$$
  
with  $H_n^{\text{alt}} = \sum_{1 \le i \le n} \frac{(-1)^i}{i} \quad (\to \ln 2).$   
 $\mathbb{E}(C_n) = 1.8n \ln n + An + B \ln n + C + \frac{D}{n} + O\left(\frac{1}{n^2}\right),$   
where  $A \approx -2.38, B = 1.675, C \approx 1.82, D = 0.6875.$ 

## Comparisons in Experiments


# Running Time Experiments



#### Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: "Count" is optimal also in this case.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot. YBB: Take second and forth smallest of five entries as pivots. Can show with urn model: "Count" is optimal also in this case. No exact analysis available.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot. YBB: Take second and forth smallest of five entries as pivots. Can show with urn model: "Count" is optimal also in this case. No exact analysis available.

# Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of  $\{1, \ldots, n\}$ .

### Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of  $\{1, \ldots, n\}$ . First k entries are pivots  $p_1, \ldots, p_k$ . Can ignore sorting of the pivots.

# Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of  $\{1, \ldots, n\}$ . First k entries are pivots  $p_1, \ldots, p_k$ . Can ignore sorting of the pivots. Classification: Split n - k remaining entries into k + 1 classes



Sizes of  $A_0, \ldots, A_k$ :  $a_0, \ldots, a_k$ . Then sort classes recursively.

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is  $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$ , then

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is  $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$ , then

$$\mathbb{E}(C_n) = \frac{1}{H_{k+1}-1} \cdot a \cdot n \ln n + O(n),$$

for  $H_{k+1} = \sum_{i=1}^{k+1} (1/i)$ .

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is  $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$ , then

$$\mathbb{E}(C_n) = \frac{1}{H_{k+1}-1} \cdot a \cdot n \ln n + O(n),$$

for  $H_{k+1} = \sum_{i=1}^{k+1} (1/i)$ .

So again: Only design and analyze classification strategy.

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is  $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$ , then

$$\mathbb{E}(C_n) = \frac{1}{H_{k+1}-1} \cdot a \cdot n \ln n + O(n),$$

for  $H_{k+1} = \sum_{i=1}^{k+1} (1/i)$ .

So again: Only design and analyze classification strategy. Necessary comparisons: 1 for  $A_0$ ,  $A_k$  and 2 for  $A_1, \ldots, A_{k-1}$ . Count "extra" comparisons!



# **Classification Using Comparison Trees**



 $\cot_T(a_0, a_1, a_2, a_3) = a_0 + a_3$ .  $\cot_T(a_0, a_1, a_2, a_3) = a_2 + 2a_3$ . Which tree is best depends on class sizes  $|A_0|, \dots, |A_k|$ .

# Good 3-Pivot Algorithm

#### Balanced Tree (Kushagra, López-Ortiz, Qiao, Munro 2014)

Always compare with  $p_2$  first.



1.846*n* ln *n* comparisons.

With good implementation: Quite good practical performance (even slightly better than YBB algorithm).

# **Optimal:** Count

- Keep track of sizes  $|A_0^i|$ ,  $|A_1^i|$ , ...,  $|A_k^i|$  of elements seen by round *i*.
- Use comparison tree optimal for estimated class sizes.

# **Optimal:** Count

- Keep track of sizes  $|A_0^i|$ ,  $|A_1^i|$ , ...,  $|A_k^i|$  of elements seen by round *i*.
- Use comparison tree optimal for estimated class sizes.

Determining optimal comparison tree is very expensive – usually impractical.

























• Easy-to-use formula for partitioning cost for dual-pivot quicksort

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
#### Summary and Research Directions

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
- Understand behavior of Count if repeated elements are present.

#### Summary and Research Directions

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
- Understand behavior of Count if repeated elements are present.
- Optimal algorithms with regard to other complexity measures, more relevant for practical performance.

#### Summary and Research Directions

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$  comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
- Understand behavior of Count if repeated elements are present.
- Optimal algorithms with regard to other complexity measures, more relevant for practical performance.

### Many thanks for your attention.

#### Literature

- Martin Aumüller, Martin Dietzfelbinger: Optimal Partitioning for Dual-Pivot Quicksort. ACM Trans. Algorithms 12(2): 18:1-18:36 (2016)
- Martin Aumüller, Martin Dietzfelbinger, Pascal Klaue: How Good Is Multi-Pivot Quicksort? ACM Trans. Algorithms 13(1): 8:1-8:47 (2016)
- Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel Krenn, Helmut Prodinger: Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort. CoRR abs/1602.04031 (2016) (Proceedings of AofA'16)
- Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel Krenn, Helmut Prodinger: Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort. CoRR abs/1602.04031 (2016)

## Literature (cont.)

- Sebastian Wild, Markus E. Nebel, Ralph Neininger: Average Case and Distributional Analysis of Dual-Pivot Quicksort. ACM Trans. Algorithms 11(3): 22:1-22:42 (2015) (Preliminary version in ESA 2012.)
- Sebastian Wild, Markus E. Nebel, Raphael Reitzig, Ulrich Laube: Engineering Java 7's Dual Pivot Quicksort Using MaLiJan. ALENEX 2013: 55-69
- Markus E. Nebel, Sebastian Wild, Conrado Martínez: Analysis of Pivot Sampling in Dual-Pivot Quicksort: A Holistic Analysis of Yaroslavskiy's Partitioning Scheme. Algorithmica 75(4): 632-683 (2016)
- Conrado Martínez, Markus E. Nebel, Sebastian Wild: Analysis of Branch Misses in Quicksort. ANALCO 2015: 114-128
- Sebastian Wild: Why Is Dual-Pivot Quicksort Fast? CoRR abs/1511.01138 (2015)

## Literature (cont.)

- Sebastian Wild: Dual-Pivot Quicksort and Beyond: Analysis of Multiway Partitioning and Its Practical Potential. PhD Thesis, Universität Kaiserslautern, 2016
- Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, J. Ian Munro: Multi-Pivot Quicksort: Theory and Experiments. ALENEX 2014: 47-60
- Charles A. R. Hoare, Quicksort, Comput. J. 5 (1962), no. 1, 10–15.
- Pascal Hennequin: Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche. PhD Thesis, Palaiseau, Ecole polytechnique, 1991
- Robert Sedgewick. Quicksort. PhD thesis, Stanford University, Stanford, CA, May 1975. Stanford Computer Science Report STAN-CS-75-492.

# Literature (cont.)

- Vladimir Yaroslavskiy, Replacement of quicksort in java.util.arrays with new dual-pivot quicksort, http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/ 002630.html, 2009, Archived version of the discussion in the OpenJDK mailing list.
- Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009.