
Optimal Dual-Pivot Quicksort
Exact Comparison Count

Martin Dietzfelbinger

Technische Universität Ilmenau

Based on joint work with
Martin Aumüller, Daniel Krenn, Clemens Heuberger, Helmut Prodinger

FCT, Bordeaux, September 11, 2017

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 1/51



Classical Quicksort
p

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.

2. Partition, i.e., re-arrange elements;
cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

=

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.

2. Partition, i.e., re-arrange elements;
cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

=

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

=

3 2 5 1 7 84 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

=

3 2 5 1 7 84 6

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively.

Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

2 7 863 51 4

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively. Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Classical Quicksort
p

2 7 863 51 4

Input: Distinct numbers a1, . . . , an (gross simplification!).

1. Choose a pivot p from {a1, . . . , an}.
2. Partition, i.e., re-arrange elements;

cost: n − 1 comparisons.

< p p > p

3. Sort the two subarrays recursively. Done.

Expected number of comparisons: 2n ln n −Θ(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 2/51



Dual-Pivot Quicksort
p

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p q

= =

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p q

= =

3 2 8 5 1 4 7 6

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p q

= =

5 7 84 6312

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p q

= =

5 7 84 6312

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively.

Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p q

= =

7 8633 51 421

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p

7 8633 51 421

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Dual-Pivot Quicksort
p

7 8633 51 421

Input: Distinct numbers a1, . . . , an.

1. Choose two pivots p, q with p < q.

2. Partition, i.e., re-arrange elements.

Partition: < p p < · · · < q > qp q

Details: in the program.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like “swaps” or “running time”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 3/51



Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Our focus. . .

Input is a random permutation of {1, . . . , n}

We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Our focus. . .

Input is a random permutation of {1, . . . , n}
We count comparisons.

Expectations of this count

Minimum (??) expected comparison count.

Not on optimizing running time.

Not on concrete (implemented) algorithms.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 4/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Outline:

Part 1:

A little history

Model for “classification”

Rough analysis, nearly optimal strategy

Part 2:

“Count”: An absolutely optimal partitioning strategy

Exact analysis of comparisons in “count”

Other cost measures (for two and more pivots)

Some open problems

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 5/51



Dual-Pivot Quicksort: Some History

R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 6/51



Dual-Pivot Quicksort: Some History
R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 6/51



Dual-Pivot Quicksort: Some History
R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 6/51



Dual-Pivot Quicksort: Some History
R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 6/51



Dual-Pivot Quicksort: Some History
R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 6/51



Dual-Pivot Quicksort: Some History
R. Sedgewick (PhD Thesis, 1975):
Analyzed a dual-pivot algorithm (given as program),
found it makes many more swaps (and comparisons)
than classical QS → no further investigation.

P. Hennequin (PhD Thesis, 1991):
Thorough analysis of quicksort with k ≥ 1 pivots (given as program).

I for k = 2, no improvements over 2n ln n found.
I for k ≥ 3, slight improvements over 2n ln n, partitioning considered

“too complicated” to give improvements.

Topic went to sleep.

Java 7 (2009):
Classical quicksort is replaced by a dual-pivot quicksort variant, proposed
(and carefully engineered) by Yaroslavskiy, Bentley, and Bloch (YBB).

Experiments: YBB algorithm around 10% faster than classical QS
(keys are integers or reals).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 6/51



YBB partitioning as program
1: procedure Y-Partition(A, p, q, left, right, posp, posq)
2: l← left + 1; g← right− 1; k← l; // pointers
3: while k ≤ g do
4: if A[k] < p then // small pivot first
5: swap A[k] and A[l]; l← l + 1;
6: else
7: if A[k] > q then // large pivot later
8: while A[g] > q do // small pivot first
9: g← g− 1;

10: if k < g then
11: if A[g] < p then // large pivot later
12: rotate3(A[g],A[k],A[l]); l← l + 1;
13: else
14: swap A[k] and A[g];

15: g← g− 1;

16: k← k + 1;

17: swap A[left] and A[l− 1];
18: swap A[right] and A[g + 1]; posp ← l− 1; posq ← g + 1;

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 7/51



Dual-Pivot Quicksort: More History

Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible?

←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Dual-Pivot Quicksort: More History
Analysis of some dual-pivot algorithms by Wild and Nebel (2012),
regarding average comparison count:

YBB (simplified, omits pivot sampling): 1.9n ln n + O(n)
Sedgewick: 2.13n ln n + O(n)

Wild, Nebel, Neininger (2015):
Distributional analysis of comparisons in YBB Dual-Pivot QS
(+ exact analysis of bytecode count).

Sebastian Wild’s Thesis (2016): Wealth of analysis of quicksort with two
and more pivots, program-based.

Our questions about constants:

Why different?

Other possibilities?

Best possible? ←

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 8/51



Part 1

Model to capture comparison count in all dual-pivot algorithms

Unified analysis

“Asymptotically optimal” algorithms

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 9/51



Part 1

Model to capture comparison count in all dual-pivot algorithms

Unified analysis

“Asymptotically optimal” algorithms

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 9/51



Part 1

Model to capture comparison count in all dual-pivot algorithms

Unified analysis

“Asymptotically optimal” algorithms

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 9/51



Part 1

Model to capture comparison count in all dual-pivot algorithms

Unified analysis

“Asymptotically optimal” algorithms

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 9/51



Part 1

Model to capture comparison count in all dual-pivot algorithms

Unified analysis

“Asymptotically optimal” algorithms

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 9/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 10/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 10/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 10/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 10/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 10/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Dual-pivot quicksort recurrence: Let

Cn = number of comparisons for sorting n elements

Pn = number of comparisons for partitioning n elements

Then:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck).

(Recall Cn = E(Pn) + 2
n

∑n−1
k=1 E(Ck) for one pivot.)

Hennequin (1991) solves recurrence for “toll function” E(Pn) = an + b
(and much more).

Wild/Nebel/Neininger (2012/2015) solve it for Pn induced by
(simplified version of) YBB.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 10/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Fact (Hennequin (1991), simplified)

Average partitioning cost of E(Pn) = a · n + O(1) leads to average sorting
cost E(Cn) = 6

5a · n ln n + O(n).

(Proof: Uses generating function techniques. Btw: 6
5 = (12 + 1

3)−1.)

Slightly more general (also in Mart́ınez, Nebel, Wild (2014)):

If E(Pn) = a · n + O(n1−ε), then E(Cn) = 6
5a · n ln n + O(n).

(Proof uses Roura’s “Continuous Master Theorem” from 2001.)

So: What is the linear term a · n in E(Pn)?

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 11/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Fact (Hennequin (1991), simplified)

Average partitioning cost of E(Pn) = a · n + O(1) leads to average sorting
cost E(Cn) = 6

5a · n ln n + O(n).

(Proof: Uses generating function techniques. Btw: 6
5 = (12 + 1

3)−1.)

Slightly more general (also in Mart́ınez, Nebel, Wild (2014)):

If E(Pn) = a · n + O(n1−ε), then E(Cn) = 6
5a · n ln n + O(n).

(Proof uses Roura’s “Continuous Master Theorem” from 2001.)

So: What is the linear term a · n in E(Pn)?

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 11/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Fact (Hennequin (1991), simplified)

Average partitioning cost of E(Pn) = a · n + O(1) leads to average sorting
cost E(Cn) = 6

5a · n ln n + O(n).

(Proof: Uses generating function techniques. Btw: 6
5 = (12 + 1

3)−1.)

Slightly more general (also in Mart́ınez, Nebel, Wild (2014)):

If E(Pn) = a · n + O(n1−ε), then E(Cn) = 6
5a · n ln n + O(n).

(Proof uses Roura’s “Continuous Master Theorem” from 2001.)

So: What is the linear term a · n in E(Pn)?

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 11/51



Reduce Sorting Cost Cn to Partitioning Cost Pn

Fact (Hennequin (1991), simplified)

Average partitioning cost of E(Pn) = a · n + O(1) leads to average sorting
cost E(Cn) = 6

5a · n ln n + O(n).

(Proof: Uses generating function techniques. Btw: 6
5 = (12 + 1

3)−1.)

Slightly more general (also in Mart́ınez, Nebel, Wild (2014)):

If E(Pn) = a · n + O(n1−ε), then E(Cn) = 6
5a · n ln n + O(n).

(Proof uses Roura’s “Continuous Master Theorem” from 2001.)

So: What is the linear term a · n in E(Pn)?

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 11/51



The Partitioning Cost

Must classify n − 2 entries x into three parts:

x < p p < x < q x > qp q

small , medium , or large

1 or 2 comparisons for x .

Unavoidable: 1 comparison for small/large x , 2 comparisons for medium x .

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare
x with p first or with q first.

Program text (YBB/Sedgewick/. . . ) implicitly defines strategy.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 12/51



The Partitioning Cost

Must classify n − 2 entries x into three parts:

x < p p < x < q x > qp q

small , medium , or large

1 or 2 comparisons for x .

Unavoidable: 1 comparison for small/large x , 2 comparisons for medium x .

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare
x with p first or with q first.

Program text (YBB/Sedgewick/. . . ) implicitly defines strategy.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 12/51



The Partitioning Cost

Must classify n − 2 entries x into three parts:

x < p p < x < q x > qp q

small , medium , or large

1 or 2 comparisons for x .

Unavoidable: 1 comparison for small/large x , 2 comparisons for medium x .

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare
x with p first or with q first.

Program text (YBB/Sedgewick/. . . ) implicitly defines strategy.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 12/51



The Partitioning Cost

Must classify n − 2 entries x into three parts:

x < p p < x < q x > qp q

small , medium , or large

1 or 2 comparisons for x .

Unavoidable: 1 comparison for small/large x , 2 comparisons for medium x .

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare
x with p first or with q first.

Program text (YBB/Sedgewick/. . . ) implicitly defines strategy.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 12/51



The Partitioning Cost

Must classify n − 2 entries x into three parts:

x < p p < x < q x > qp q

small , medium , or large

1 or 2 comparisons for x .

Unavoidable: 1 comparison for small/large x , 2 comparisons for medium x .

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare
x with p first or with q first.

Program text (YBB/Sedgewick/. . . ) implicitly defines strategy.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 12/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

+1

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

p

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

+1

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

p q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

+1

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

p q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

+1

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

σp q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

2 : q

+1

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

σp q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

2 : q

+1

+2

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

σµp q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

2 : q

4 : q

+1

+2

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

σµp q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

2 : q

4 : q

+1

+2

+2

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

σµ σp q

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Classification Tree: Models Strategy

3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : q 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

3 : p

2 : q

4 : q

+1

+2

+2

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

Example: 3 4 2 1 5

σµ σp q
⇒ 5 comparisons.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 13/51



Average Cost

For the average partitioning/classification cost E(Pn) we get:

E(Pn) ≈ 4/3n + “average number of extra comparisons”

extra :

small x compared to q first

large x compared to p first

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 14/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Extra Comparisons in the Classification Tree
v : node in classification tree.
Fix s, `, the number of small resp. large elements.
(Apart from that: input random.)

pv : probability that node v is reached.

sv : number of “small” elements seen on path to v .

`v : number of “large” elements seen on path to v .

If v is labelled p, then
contribution to average number
of extra comparisons is:

pv ·
`− `v

n − level(v)
≈ pv ·

`

n − 2
.

If v is labelled q, then
contribution to average number
of extra comparisons is:

pv ·
s − sv

n − level(v)
≈ pv ·

s

n − 2
.

“≈” can be justified up to small error.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 15/51



Cost of an Arbitrary Classification Tree
Average number of comparisons to larger/smaller pivot first, given s, `:

f q
s,` =

∑
v is q-node

pv = E(#(q-nodes reached) | s, `)

f p
s,` =

∑
v is p-node

pv = E(#(p-nodes reached) | s, `).

Lemma

Average comparison cost for classification:

E(Pn) =
4

3
n +

1(n
2

)
(n − 2)

∑
s+`≤n−2

(
f q
s,` · s + f p

s,` · `
)

+ O(n1−ε).

(Proof: Method of bounded differences:
Behaviour of differences as expected w.h.p. in most levels of the tree.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 16/51



Cost of an Arbitrary Classification Tree
Average number of comparisons to larger/smaller pivot first, given s, `:

f q
s,` =

∑
v is q-node

pv = E(#(q-nodes reached) | s, `)

f p
s,` =

∑
v is p-node

pv = E(#(p-nodes reached) | s, `).

Lemma

Average comparison cost for classification:

E(Pn) =
4

3
n +

1(n
2

)
(n − 2)

∑
s+`≤n−2

(
f q
s,` · s + f p

s,` · `
)

+ O(n1−ε).

(Proof: Method of bounded differences:
Behaviour of differences as expected w.h.p. in most levels of the tree.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 16/51



Cost of an Arbitrary Classification Tree
Average number of comparisons to larger/smaller pivot first, given s, `:

f q
s,` =

∑
v is q-node

pv = E(#(q-nodes reached) | s, `)

f p
s,` =

∑
v is p-node

pv = E(#(p-nodes reached) | s, `).

Lemma

Average comparison cost for classification:

E(Pn) =
4

3
n +

1(n
2

)
(n − 2)

∑
s+`≤n−2

(
f q
s,` · s + f p

s,` · `
)

+ O(n1−ε).

(Proof: Method of bounded differences:
Behaviour of differences as expected w.h.p. in most levels of the tree.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 16/51



Cost of an Arbitrary Classification Tree
Average number of comparisons to larger/smaller pivot first, given s, `:

f q
s,` =

∑
v is q-node

pv = E(#(q-nodes reached) | s, `)

f p
s,` =

∑
v is p-node

pv = E(#(p-nodes reached) | s, `).

Lemma

Average comparison cost for classification:

E(Pn) =
4

3
n +

1(n
2

)
(n − 2)

∑
s+`≤n−2

(
f q
s,` · s + f p

s,` · `
)

+ O(n1−ε).

(Proof: Method of bounded differences:
Behaviour of differences as expected w.h.p. in most levels of the tree.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 16/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first

, Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate

, Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn)

=
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε).

Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Oblivious Strategies

Ignore results of previous comparisons,
all nodes on one level use the same pivot first.

Examples: Always q first , Alternate , Random .

E(Pn) =
4

3
n +

1(n
2

)
· (n − 2)

·
∑

s+`≤n−2
(f q
n · s + (n − 2− f q

n ) · `) + O(n1−ε)

(symmetry)
=

4

3
n +

1(n
2

)
(n − 2)

·
∑

s+`≤n−2
s(n − 2) + O(n1−ε)

=
5

3
n + O(n1−ε). Hence:

E(Cn) =
6

5
· 5

3
n ln n + O(n) = 2n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 17/51



Analyzing Strategies

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

f q
s,` = ` and f p

s,` = s + m = n − 2− `.

E(PYn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s`

n − 2
+

(s + m)`

n − 2

)
+ O(n1−ε)

=
19

12
n + O(n1−ε). Hence:

E(CYn ) =
6

5
· 19

12
n ln n + O(n) = 1.9n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 18/51



Analyzing Strategies

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

f q
s,` = ` and f p

s,` = s + m = n − 2− `.

E(PYn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s`

n − 2
+

(s + m)`

n − 2

)
+ O(n1−ε)

=
19

12
n + O(n1−ε). Hence:

E(CYn ) =
6

5
· 19

12
n ln n + O(n) = 1.9n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 18/51



Analyzing Strategies

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

f q
s,` = ` and f p

s,` = s + m = n − 2− `.

E(PYn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s`

n − 2
+

(s + m)`

n − 2

)
+ O(n1−ε)

=
19

12
n + O(n1−ε).

Hence:

E(CYn ) =
6

5
· 19

12
n ln n + O(n) = 1.9n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 18/51



Analyzing Strategies

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

f q
s,` = ` and f p

s,` = s + m = n − 2− `.

E(PYn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s`

n − 2
+

(s + m)`

n − 2

)
+ O(n1−ε)

=
19

12
n + O(n1−ε). Hence:

E(CYn ) =
6

5
· 19

12
n ln n + O(n) = 1.9n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 18/51



Analyzing Strategies

Strategy from Sedgewick’s Algorithm

f q
s,` = (n − 2) · s/(s + `) and f p

s,` = (n − 2) · `/(s + `)

E(PSn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s2

s + `
+

`2

s + `

)
+ O(n1−ε) =

16

9
n + O(n1−ε)

E(CSn ) =
6

5
· 16

9
n ln n + O(n) = 2.133.. · n ln n + O(n). (Also: (NW 2012).)

Simple improvement (also observed by Wild):
In Sedgewick’s algorithm, switch p and q in choice for first pivot.

E(CS
′

n ) =
6

5
· 14

9
n ln n + O(n) = 1.866.. · n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 19/51



Analyzing Strategies

Strategy from Sedgewick’s Algorithm

f q
s,` = (n − 2) · s/(s + `) and f p

s,` = (n − 2) · `/(s + `)

E(PSn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s2

s + `
+

`2

s + `

)
+ O(n1−ε) =

16

9
n + O(n1−ε)

E(CSn ) =
6

5
· 16

9
n ln n + O(n) = 2.133.. · n ln n + O(n). (Also: (NW 2012).)

Simple improvement (also observed by Wild):
In Sedgewick’s algorithm, switch p and q in choice for first pivot.

E(CS
′

n ) =
6

5
· 14

9
n ln n + O(n) = 1.866.. · n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 19/51



Analyzing Strategies

Strategy from Sedgewick’s Algorithm

f q
s,` = (n − 2) · s/(s + `) and f p

s,` = (n − 2) · `/(s + `)

E(PSn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s2

s + `
+

`2

s + `

)
+ O(n1−ε) =

16

9
n + O(n1−ε)

E(CSn ) =
6

5
· 16

9
n ln n + O(n) = 2.133.. · n ln n + O(n). (Also: (NW 2012).)

Simple improvement (also observed by Wild):
In Sedgewick’s algorithm, switch p and q in choice for first pivot.

E(CS
′

n ) =
6

5
· 14

9
n ln n + O(n) = 1.866.. · n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 19/51



Analyzing Strategies

Strategy from Sedgewick’s Algorithm

f q
s,` = (n − 2) · s/(s + `) and f p

s,` = (n − 2) · `/(s + `)

E(PSn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s2

s + `
+

`2

s + `

)
+ O(n1−ε) =

16

9
n + O(n1−ε)

E(CSn ) =
6

5
· 16

9
n ln n + O(n) = 2.133.. · n ln n + O(n). (Also: (NW 2012).)

Simple improvement (also observed by Wild):
In Sedgewick’s algorithm, switch p and q in choice for first pivot.

E(CS
′

n ) =
6

5
· 14

9
n ln n + O(n) = 1.866.. · n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 19/51



Analyzing Strategies

Strategy from Sedgewick’s Algorithm

f q
s,` = (n − 2) · s/(s + `) and f p

s,` = (n − 2) · `/(s + `)

E(PSn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

(
s2

s + `
+

`2

s + `

)
+ O(n1−ε) =

16

9
n + O(n1−ε)

E(CSn ) =
6

5
· 16

9
n ln n + O(n) = 2.133.. · n ln n + O(n). (Also: (NW 2012).)

Simple improvement (also observed by Wild):
In Sedgewick’s algorithm, switch p and q in choice for first pivot.

E(CS
′

n ) =
6

5
· 14

9
n ln n + O(n) = 1.866.. · n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 19/51



Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 20/51



Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 20/51



Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 20/51



Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 20/51



Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 20/51



Almost Optimal Strategy (with Oracle)
Assume: Given input and pivots, an oracle tells us whether or not ` > s.

Goal: Minimize

pn =
4

3
n +

1(n
2

)
· (n − 2)

∑
s+`≤n−2

(
f q
s,` · s + (n − 2− f q

s,`) · `
)

+ O(n1−ε).

Strategy

` > s: Compare all elements to larger pivot first (f q
s,` = n − 2).

` ≤ s: Compare all elements to smaller pivot first (f q
s,` = 0).

E(PIn ) =
4

3
n +

1(n
2

) ∑
s+`≤n−2

min{s, `}+ O(n1−ε) =
3

2
n + O(n1−ε).

E(CIn ) =
6

5
· 3

2
n ln n + O(n) = 1.8n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 20/51



Idealized, but gives lower bound:

No strategy can use fewer than 1.8n ln n − O(n) comparisons on average.

Implementation?

Random Sampling (read n3/4 entries) to estimate if s > ` or s ≤ `.
With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: 1.8n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 21/51



Idealized, but gives lower bound:

No strategy can use fewer than 1.8n ln n − O(n) comparisons on average.

Implementation?

Random Sampling (read n3/4 entries) to estimate if s > ` or s ≤ `.
With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: 1.8n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 21/51



Idealized, but gives lower bound:

No strategy can use fewer than 1.8n ln n − O(n) comparisons on average.

Implementation?

Random Sampling (read n3/4 entries) to estimate if s > ` or s ≤ `.

With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: 1.8n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 21/51



Idealized, but gives lower bound:

No strategy can use fewer than 1.8n ln n − O(n) comparisons on average.

Implementation?

Random Sampling (read n3/4 entries) to estimate if s > ` or s ≤ `.
With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: 1.8n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 21/51



Idealized, but gives lower bound:

No strategy can use fewer than 1.8n ln n − O(n) comparisons on average.

Implementation?

Random Sampling (read n3/4 entries) to estimate if s > ` or s ≤ `.
With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: 1.8n ln n + O(n).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 21/51



Part 2

Find a truly optimal algorithm.

Do an exact analysis.

(From (ADHKP16).)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 22/51



Part 2

Find a truly optimal algorithm.

Do an exact analysis.

(From (ADHKP16).)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 22/51



Part 2

Find a truly optimal algorithm.

Do an exact analysis.

(From (ADHKP16).)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 22/51



Part 2

Find a truly optimal algorithm.

Do an exact analysis.

(From (ADHKP16).)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 22/51



The Comparison-Optimal Dual-Pivot Quicksort Algorithm
Assume we are in round i/level i of the tree.

Strategy “Count”

−→

σ λ σ µ ? ? ? ?

Next element

Seen si−1 small and `i−1 large elements in

Classification Strategy:

`i−1 > si−1: compare with larger pivot first.

`i−1 ≤ si−1: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is 1.8n ln n + O(n).

(O(n) away from (idealized) optimal strategy.)

Now:
“Count” is optimal + exact average comparison count (ADHKP16/17).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 23/51



The Comparison-Optimal Dual-Pivot Quicksort Algorithm
Assume we are in round i/level i of the tree.

Strategy “Count”

−→

σ λ σ µ ? ? ? ?

Next element

Seen si−1 small and `i−1 large elements in

Classification Strategy:

`i−1 > si−1: compare with larger pivot first.

`i−1 ≤ si−1: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is 1.8n ln n + O(n).

(O(n) away from (idealized) optimal strategy.)

Now:
“Count” is optimal + exact average comparison count (ADHKP16/17).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 23/51



The Comparison-Optimal Dual-Pivot Quicksort Algorithm
Assume we are in round i/level i of the tree.

Strategy “Count”

−→

σ λ σ µ ? ? ? ?

Next element

Seen si−1 small and `i−1 large elements in

Classification Strategy:

`i−1 > si−1: compare with larger pivot first.

`i−1 ≤ si−1: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is 1.8n ln n + O(n).

(O(n) away from (idealized) optimal strategy.)

Now:
“Count” is optimal + exact average comparison count (ADHKP16/17).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 23/51



The Comparison-Optimal Dual-Pivot Quicksort Algorithm
Assume we are in round i/level i of the tree.

Strategy “Count”

−→

σ λ σ µ ? ? ? ?

Next element

Seen si−1 small and `i−1 large elements in

Classification Strategy:

`i−1 > si−1: compare with larger pivot first.

`i−1 ≤ si−1: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is 1.8n ln n + O(n).

(O(n) away from (idealized) optimal strategy.)

Now:
“Count” is optimal + exact average comparison count (ADHKP16/17).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 23/51



Proof idea for: “Count” is optimal (among all algorithms)

Distribution on {σ, µ, λ}-sequences generated by input and two random
pivots is given by:

Each fixed sequence with s many σ’s, m many µ’s, ` many λ’s, with
s + m + l = n − 2 appears with probability

1(n
2

) · s!m!`!

(n − 2)!
.

Reason:
Probability to have s many σ’s, m many µ’s, ` many λ’s is 1/

(n
2

)
.

Every sequence with s many σ’s, m many µ’s, ` many λ’s has the same
probability

( n−2
s,m,`

)
.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 24/51



Proof idea for: “Count” is optimal (among all algorithms)

Distribution on {σ, µ, λ}-sequences generated by input and two random
pivots is given by:

Each fixed sequence with s many σ’s, m many µ’s, ` many λ’s, with
s + m + l = n − 2 appears with probability

1(n
2

) · s!m!`!

(n − 2)!
.

Reason:
Probability to have s many σ’s, m many µ’s, ` many λ’s is 1/

(n
2

)
.

Every sequence with s many σ’s, m many µ’s, ` many λ’s has the same
probability

( n−2
s,m,`

)
.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 24/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.

2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random.

Take down its color c, put it back,
and put another ball of the same color in the urn.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random.

Take down its color c, put it back,
and put another ball of the same color in the urn.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,

and put another ball of the same color in the urn.

λ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,

and put another ball of the same color in the urn.

λ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ σ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ σ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ σ

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

λ σ µ σ

Why same distribution as “random permutation → pivots → relabel”?

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



Proof idea for: “Count” is optimal (among all algorithms)
Obtain same distribution on {σ, µ, λ}-sequences by Pólya urn with three
colors.

1 Put one light green ball, one green ball, one dark green ball in urn.
2 Round i = 1, . . . , n − 2:

Choose ball from urn at random. Take down its color c, put it back,
and put another ball of the same color in the urn.

In Round i :

Pr(new element is σ (small)) =
si−1 + 1

i + 2
.

(analogous formulas for medium/large elements.) Then: induction!

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 25/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1.

“Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.

Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



“Count” is optimal (among all algorithms)
Claim: Every partitioning strategy S (decision in round i is based on the
full history up to round i − 1) makes at least as many comparisons in
round i as “Count” (on average).

Proof: Assume e.g. si−1 ≥ `i−1. “Count” compares with small pivot first.
Probability to generate additional cost 1 in this step:

Pr(“Count” gets extra comparison in step i) =
`i−1 + 1

i + 2
.

If S (based on full history up to i − 1, even using randomness)
uses small pivot first, no difference.

If S takes large pivot first:

Pr(S gets extra comparison in step i) =
si−1 + 1

i + 2
,

at least as big as the probability for “Count”. 2

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 26/51



Exact analysis of “Count”

Goal

Analyze “Count” exactly.

Exact DP recurrence:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck)

(Wild 2013) showed how to solve this exactly, using
generating functions, if E(Pn) is given.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 27/51



Exact analysis of “Count”

Goal

Analyze “Count” exactly.

Exact DP recurrence:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck)

(Wild 2013) showed how to solve this exactly, using
generating functions, if E(Pn) is given.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 27/51



Exact analysis of “Count”

Goal

Analyze “Count” exactly.

Exact DP recurrence:

E(Cn) = E(Pn) +
3(n
2

) n−2∑
k=1

(n − 1− k)E(Ck)

(Wild 2013) showed how to solve this exactly, using
generating functions, if E(Pn) is given.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 27/51



Reminder: Generating functions.

Analytic function f : C→ C (with a certain convergence radius) can be
written f (z) =

∑
n≥0 anzn, represents sequence (a0, a1, a2, . . . ).

Example:

arctanh(z) =
1

2
(ln(1 + z)− ln(1− z))

=
1

2

∑
n≥1

(−1)n + 1

n
zn

=
∑
n≥1

[n odd]

n
zn.

Represents (0, 1, 0, 13 , 0,
1
5 , 0,

1
7 , ...)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 28/51



Reminder: Generating functions.

Analytic function f : C→ C (with a certain convergence radius) can be
written f (z) =

∑
n≥0 anzn, represents sequence (a0, a1, a2, . . . ).

Example:

arctanh(z) =
1

2
(ln(1 + z)− ln(1− z))

=
1

2

∑
n≥1

(−1)n + 1

n
zn

=
∑
n≥1

[n odd]

n
zn.

Represents (0, 1, 0, 13 , 0,
1
5 , 0,

1
7 , ...)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 28/51



Reminder: Generating functions.

Analytic function f : C→ C (with a certain convergence radius) can be
written f (z) =

∑
n≥0 anzn, represents sequence (a0, a1, a2, . . . ).

Example:

arctanh(z) =
1

2
(ln(1 + z)− ln(1− z))

=
1

2

∑
n≥1

(−1)n + 1

n
zn

=
∑
n≥1

[n odd]

n
zn.

Represents (0, 1, 0, 13 , 0,
1
5 , 0,

1
7 , ...)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 28/51



Reminder: Generating functions.

Analytic function f : C→ C (with a certain convergence radius) can be
written f (z) =

∑
n≥0 anzn, represents sequence (a0, a1, a2, . . . ).

Example:

arctanh(z) =
1

2
(ln(1 + z)− ln(1− z))

=
1

2

∑
n≥1

(−1)n + 1

n
zn

=
∑
n≥1

[n odd]

n
zn.

Represents (0, 1, 0, 13 , 0,
1
5 , 0,

1
7 , ...)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 28/51



Exact analysis of “Count”

For comparison count of sorting: C (z) =
∑
n≥0

E(Cn)zn,

for comparison count of partitioning: P(z) =
∑
n≥0

E(Pn)zn.

(Wild 2013) showed: If E(Pn) and E(Cn) have generating functions
P(z) and C (z), then

C (z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3P ′′(s) ds dt.

Task: Find exact formula for E(Pn) (and its generating function)
for strategy “Count”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 29/51



Exact analysis of “Count”

For comparison count of sorting: C (z) =
∑
n≥0

E(Cn)zn,

for comparison count of partitioning: P(z) =
∑
n≥0

E(Pn)zn.

(Wild 2013) showed: If E(Pn) and E(Cn) have generating functions
P(z) and C (z), then

C (z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3P ′′(s) ds dt.

Task: Find exact formula for E(Pn) (and its generating function)
for strategy “Count”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 29/51



Exact analysis of “Count”

For comparison count of sorting: C (z) =
∑
n≥0

E(Cn)zn,

for comparison count of partitioning: P(z) =
∑
n≥0

E(Pn)zn.

(Wild 2013) showed: If E(Pn) and E(Cn) have generating functions
P(z) and C (z), then

C (z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3P ′′(s) ds dt.

Task: Find exact formula for E(Pn) (and its generating function)
for strategy “Count”.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 29/51



Exact analysis of “Count”

Define “random walk”:

Xi = si − `i , for 0 ≤ i ≤ n.

Classification Strategy, round i :

Xi−1 ≥ 0: compare with smaller pivot first.

Xi−1 < 0: compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify n′ = s + ` elements.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 30/51



Exact analysis of “Count”

Define “random walk”:

Xi = si − `i , for 0 ≤ i ≤ n.

Classification Strategy, round i :

Xi−1 ≥ 0: compare with smaller pivot first.

Xi−1 < 0: compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify n′ = s + ` elements.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 30/51



Exact analysis of “Count”

Define “random walk”:

Xi = si − `i , for 0 ≤ i ≤ n.

Classification Strategy, round i :

Xi−1 ≥ 0: compare with smaller pivot first.

Xi−1 < 0: compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify n′ = s + ` elements.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 30/51



Exact analysis of “Count”

Define “random walk”:

Xi = si − `i , for 0 ≤ i ≤ n.

Classification Strategy, round i :

Xi−1 ≥ 0: compare with smaller pivot first.

Xi−1 < 0: compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify n′ = s + ` elements.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 30/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔

move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi

or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Random Walks & Analysis of Count

1

n′
i

Xi

−3

−2

−1

0

1

2

3

λ

λ σ

σ

σ λ σ

σ λ

λ

λ σ λ

λ σ

σ

σ

−→ λ λ σ σ σ λ σ σ λ λ λ σ λ λ σ σ σ

Observation: Extra comparison in round i ⇔
move towards zero in Xi−1 → Xi or move down from a zero.

Easy: Exactly min{s, `} many “move towards zero” situations.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 31/51



Counting Zeros in Random Walks

Number of zeros (without time n′): Zn′ := #{i | 0 ≤ i ≤ n′,Xi = 0}.

Can only have zeros at even positions i .
What is E(Zn′)?

E(Zn′) =
1

n′ + 1

bn′/2c∑
m=0

n′−m∑
`=m

(2m
m

)(n′−2m
`−m

)(n′
`

)
=

4

n′ + 1

∑
0≤k<`<dn′/2e

(n′
k

)(n′
`

) + [n′ even]
1

n′ + 1

(
2n

′( n′

n′/2

) − 1

)
+ 1.

(By generting function manipulations.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 32/51



Counting Zeros in Random Walks

Number of zeros (without time n′): Zn′ := #{i | 0 ≤ i ≤ n′,Xi = 0}.

Can only have zeros at even positions i .
What is E(Zn′)?

E(Zn′) =
1

n′ + 1

bn′/2c∑
m=0

n′−m∑
`=m

(2m
m

)(n′−2m
`−m

)(n′
`

)
=

4

n′ + 1

∑
0≤k<`<dn′/2e

(n′
k

)(n′
`

) + [n′ even]
1

n′ + 1

(
2n

′( n′

n′/2

) − 1

)
+ 1.

(By generting function manipulations.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 32/51



Counting Zeros in Random Walks

Number of zeros (without time n′): Zn′ := #{i | 0 ≤ i ≤ n′,Xi = 0}.

Can only have zeros at even positions i .
What is E(Zn′)?

E(Zn′) =
1

n′ + 1

bn′/2c∑
m=0

n′−m∑
`=m

(2m
m

)(n′−2m
`−m

)(n′
`

)
=

4

n′ + 1

∑
0≤k<`<dn′/2e

(n′
k

)(n′
`

) + [n′ even]
1

n′ + 1

(
2n

′( n′

n′/2

) − 1

)
+ 1.

(By generting function manipulations.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 32/51



Counting Zeros in Random Walks

Number of zeros (without time n′): Zn′ := #{i | 0 ≤ i ≤ n′,Xi = 0}.

Can only have zeros at even positions i .
What is E(Zn′)?

E(Zn′) =
1

n′ + 1

bn′/2c∑
m=0

n′−m∑
`=m

(2m
m

)(n′−2m
`−m

)(n′
`

)
=

4

n′ + 1

∑
0≤k<`<dn′/2e

(n′
k

)(n′
`

) + [n′ even]
1

n′ + 1

(
2n

′( n′

n′/2

) − 1

)
+ 1.

(By generting function manipulations.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 32/51



Counting Zeros in Random Walks

Number of zeros (without time n′): Zn′ := #{i | 0 ≤ i ≤ n′,Xi = 0}.

Can only have zeros at even positions i .
What is E(Zn′)?

E(Zn′) =
1

n′ + 1

bn′/2c∑
m=0

n′−m∑
`=m

(2m
m

)(n′−2m
`−m

)(n′
`

)
=

4

n′ + 1

∑
0≤k<`<dn′/2e

(n′
k

)(n′
`

) + [n′ even]
1

n′ + 1

(
2n

′( n′

n′/2

) − 1

)
+ 1.

(By generting function manipulations.)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 32/51



Counting Zeros in Random Walks

Central observation

For each even i , 0 ≤ i ≤ n′:

P(Xi = 0) =
1

i + 1
.

Hence, with linearity of expectation:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
=: Hodd

n′+1.

(Hence Hodd
n′+1 is equal to the two complicated sums!)

Background: Distribution of si is given by another Pólya urn experiment
(two colors, initially one ball of each color; it is known that such si is
uniform in {0, 1, . . . , i}).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 33/51



Counting Zeros in Random Walks

Central observation

For each even i , 0 ≤ i ≤ n′:

P(Xi = 0) =
1

i + 1
.

Hence, with linearity of expectation:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
=: Hodd

n′+1.

(Hence Hodd
n′+1 is equal to the two complicated sums!)

Background: Distribution of si is given by another Pólya urn experiment
(two colors, initially one ball of each color; it is known that such si is
uniform in {0, 1, . . . , i}).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 33/51



Counting Zeros in Random Walks

Central observation

For each even i , 0 ≤ i ≤ n′:

P(Xi = 0) =
1

i + 1
.

Hence, with linearity of expectation:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
=: Hodd

n′+1.

(Hence Hodd
n′+1 is equal to the two complicated sums!)

Background: Distribution of si is given by another Pólya urn experiment
(two colors, initially one ball of each color; it is known that such si is
uniform in {0, 1, . . . , i}).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 33/51



Counting Zeros in Random Walks

Central observation

For each even i , 0 ≤ i ≤ n′:

P(Xi = 0) =
1

i + 1
.

Hence, with linearity of expectation:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
=: Hodd

n′+1.

(Hence Hodd
n′+1 is equal to the two complicated sums!)

Background: Distribution of si is given by another Pólya urn experiment
(two colors, initially one ball of each color; it is known that such si is
uniform in {0, 1, . . . , i}).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 33/51



Counting Zeros in Random Walks

Central observation

For each even i , 0 ≤ i ≤ n′:

P(Xi = 0) =
1

i + 1
.

Hence, with linearity of expectation:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
=: Hodd

n′+1.

(Hence Hodd
n′+1 is equal to the two complicated sums!)

Background: Distribution of si is given by another Pólya urn experiment
(two colors, initially one ball of each color; it is known that such si is
uniform in {0, 1, . . . , i}).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 33/51



Exact Average Partitioning Cost

Have seen:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
= Hodd

n′+1.

For “moves down from zero” use symmetry: “up from zero” has same
probability as “down from zero”. No “down from zero” at position n′.
Thus:

E(#(extra comp’s) | s + ` = n′) = min(s, `) +
1

2

(
E(Zn′)−

[n′ even]

n′ + 1

)
.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 34/51



Exact Average Partitioning Cost

Have seen:

E(Zn′) =
∑

0≤i≤n′
i even

1

i + 1
= Hodd

n′+1.

For “moves down from zero” use symmetry: “up from zero” has same
probability as “down from zero”. No “down from zero” at position n′.
Thus:

E(#(extra comp’s) | s + ` = n′) = min(s, `) +
1

2

(
E(Zn′)−

[n′ even]

n′ + 1

)
.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 34/51



Exact Average Partitioning Cost
Back to general situation including medium elements.
Averaging over all

(n
2

)
pivot choices and adding 4

3(n − 2) + 1“forced”
comparisons yields:

E(Pct
n ) =

3n

2
+

1

2
Hodd

n − 19

8
− 3[n odd]

8n
− [n even]

8(n − 1)
.

We can “easily” write down the generating function, term by term:

Pct(z) = 3
2(1−z)2 + arctanh(z)

2(1−z) −
31z2

8(1−z) −
3+z
8 arctanh(z)− 3

2 −
25z
8 .

Now solving

C ct(z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3(Pct)′′(s) ds dt

by integration (for each term separately) gives C ct(z) and then a fully
explicit formula for E(C ct

n ).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 35/51



Exact Average Partitioning Cost
Back to general situation including medium elements.
Averaging over all

(n
2

)
pivot choices and adding 4

3(n − 2) + 1“forced”
comparisons yields:

E(Pct
n ) =

3n

2
+

1

2
Hodd

n − 19

8
− 3[n odd]

8n
− [n even]

8(n − 1)
.

We can “easily” write down the generating function, term by term:

Pct(z) = 3
2(1−z)2 + arctanh(z)

2(1−z) −
31z2

8(1−z) −
3+z
8 arctanh(z)− 3

2 −
25z
8 .

Now solving

C ct(z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3(Pct)′′(s) ds dt

by integration (for each term separately) gives C ct(z) and then a fully
explicit formula for E(C ct

n ).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 35/51



Exact Average Partitioning Cost
Back to general situation including medium elements.
Averaging over all

(n
2

)
pivot choices and adding 4

3(n − 2) + 1“forced”
comparisons yields:

E(Pct
n ) =

3n

2
+

1

2
Hodd

n − 19

8
− 3[n odd]

8n
− [n even]

8(n − 1)
.

We can “easily” write down the generating function, term by term:

Pct(z) = 3
2(1−z)2 + arctanh(z)

2(1−z) −
31z2

8(1−z) −
3+z
8 arctanh(z)− 3

2 −
25z
8 .

Now solving

C ct(z) = (1− z)3
∫ z

0
(1− t)−6

∫ t

0
(1− s)3(Pct)′′(s) ds dt

by integration (for each term separately) gives C ct(z) and then a fully
explicit formula for E(C ct

n ).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 35/51



Expected number of comparisons:

E(Cn) =
9

5
nHn −

1

5
nHalt

n −
89

25
n +

67

40
Hn −

3

40
nHalt

n −
83

800
+

(−1)n

10

− [n even]

320

(
1

n − 3
+

3

n − 1

)
+

[n odd]

320

(
3

n − 2
+

1

n

)
,

with Halt
n =

∑
1≤i≤n

(−1)i
i (→ ln 2).

E(Cn) = 1.8n ln n + An + B ln n + C +
D

n
+ O

(
1

n2

)
,

where A ≈ −2.38, B = 1.675, C ≈ 1.82, D = 0.6875.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 36/51



Comparisons in Experiments

8 10 12 14 16 18 20 22 24 26 28 30

1.4

1.6

1.8

Items [log2(n)]

C
om

p
ar

is
on

s
/n

ln
n

QS Y
S ′ C
SP L

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 37/51



Running Time Experiments

16 18 20 22 24 26 28

4

4.2

4.4

4.6

Items [log2(n)]

T
im

e
/n

ln
n

[n
s]

C QS SP Y L

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 38/51



“Pivot Sampling”

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: “Count” is optimal also in this case.

No exact analysis available.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 39/51



“Pivot Sampling”

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: “Count” is optimal also in this case.

No exact analysis available.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 39/51



“Pivot Sampling”

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: “Count” is optimal also in this case.

No exact analysis available.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 39/51



“Pivot Sampling”

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: “Count” is optimal also in this case.

No exact analysis available.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 39/51



“Pivot Sampling”

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: “Count” is optimal also in this case.

No exact analysis available.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 39/51



Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of {1, . . . , n}.

First k entries are pivots p1, . . . , pk .
Can ignore sorting of the pivots.
Classification: Split n − k remaining entries into k + 1 classes

. . . < p1 p1 p1 < . . . < p2 p2 p2 < . . . < p3 · · ·p3 pk < . . .pk

A0 A1 A2 Ak

Sizes of A0, . . . ,Ak : a0, . . . , ak .
Then sort classes recursively.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 40/51



Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of {1, . . . , n}.
First k entries are pivots p1, . . . , pk .
Can ignore sorting of the pivots.

Classification: Split n − k remaining entries into k + 1 classes

. . . < p1 p1 p1 < . . . < p2 p2 p2 < . . . < p3 · · ·p3 pk < . . .pk

A0 A1 A2 Ak

Sizes of A0, . . . ,Ak : a0, . . . , ak .
Then sort classes recursively.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 40/51



Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of {1, . . . , n}.
First k entries are pivots p1, . . . , pk .
Can ignore sorting of the pivots.
Classification: Split n − k remaining entries into k + 1 classes

. . . < p1 p1 p1 < . . . < p2 p2 p2 < . . . < p3 · · ·p3 pk < . . .pk

A0 A1 A2 Ak

Sizes of A0, . . . ,Ak : a0, . . . , ak .
Then sort classes recursively.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 40/51



Quicksort with k > 2 Pivots

(Hennequin, 1991) or Roura’s C.M.T.

If partitioning cost is E(Pn) = a · n + O(n1−ε), then

E(Cn) =
1

Hk+1 − 1
· a · n ln n + O(n),

for Hk+1 =
∑k+1

i=1 (1/i).

So again: Only design and analyze classification strategy.
Necessary comparisons: 1 for A0, Ak and 2 for A1, . . . ,Ak−1.
Count “extra” comparisons!

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 41/51



Quicksort with k > 2 Pivots

(Hennequin, 1991) or Roura’s C.M.T.

If partitioning cost is E(Pn) = a · n + O(n1−ε), then

E(Cn) =
1

Hk+1 − 1
· a · n ln n + O(n),

for Hk+1 =
∑k+1

i=1 (1/i).

So again: Only design and analyze classification strategy.
Necessary comparisons: 1 for A0, Ak and 2 for A1, . . . ,Ak−1.
Count “extra” comparisons!

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 41/51



Quicksort with k > 2 Pivots

(Hennequin, 1991) or Roura’s C.M.T.

If partitioning cost is E(Pn) = a · n + O(n1−ε), then

E(Cn) =
1

Hk+1 − 1
· a · n ln n + O(n),

for Hk+1 =
∑k+1

i=1 (1/i).

So again: Only design and analyze classification strategy.

Necessary comparisons: 1 for A0, Ak and 2 for A1, . . . ,Ak−1.
Count “extra” comparisons!

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 41/51



Quicksort with k > 2 Pivots

(Hennequin, 1991) or Roura’s C.M.T.

If partitioning cost is E(Pn) = a · n + O(n1−ε), then

E(Cn) =
1

Hk+1 − 1
· a · n ln n + O(n),

for Hk+1 =
∑k+1

i=1 (1/i).

So again: Only design and analyze classification strategy.
Necessary comparisons: 1 for A0, Ak and 2 for A1, . . . ,Ak−1.
Count “extra” comparisons!

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 41/51



Quicksort with k Pivots

p1

A0 p2

A1 A2

p2

p1

A0 A1

A2

+0

+0 +1 +1 +0

+0

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 42/51



Classification Using Comparison Trees

p2

p1

A0 A1

p3

A2 A3

+1 +0 +0 +1

costT (a0, a1, a2, a3) = a0 + a3.

p1

A0 p2

A1 p3

A2 A3

+0

+0

+1 +2

costT (a0, a1, a2, a3) = a2 + 2a3.
Which tree is best depends on class sizes |A0|,. . . ,|Ak |.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 43/51



Good 3-Pivot Algorithm

Balanced Tree (Kushagra, López-Ortiz, Qiao, Munro 2014)

Always compare with p2 first.

p2

p1

A0 A1

p3

A2 A3

1.846n ln n comparisons.
With good implementation: Quite good practical performance
(even slightly better than YBB algorithm).

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 44/51



Optimal: Count

Keep track of sizes |Ai
0|, |Ai

1|, . . . , |Ai
k | of elements seen by round i .

Use comparison tree optimal for estimated class sizes.

Determining optimal comparison tree is very expensive – usually
impractical.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 45/51



Optimal: Count

Keep track of sizes |Ai
0|, |Ai

1|, . . . , |Ai
k | of elements seen by round i .

Use comparison tree optimal for estimated class sizes.

Determining optimal comparison tree is very expensive – usually
impractical.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 45/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

op
t.

2-
Pivo

t [A
D

13
]

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

M
o3

Q
S

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

M
o3

Q
S

op
t.

3-
Pivo

t

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

M
o3

Q
S

op
t.

3-
Pivo

t

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

bes
t-k

now
n

7-
Pivo

t

M
o3

Q
S

op
t.

3-
Pivo

t

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

bes
t-k

now
n

7-
Pivo

t

M
o3

Q
S

M
o7

Q
S

op
t.

3-
Pivo

t

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

bes
t-k

now
n

7-
Pivo

t

M
o3

Q
S

M
o7

Q
S

op
t.

3-
Pivo

t

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Comparison Counts: Summary

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

op
t.

2-
Pivo

t (IC
ALP

’1
3)

Cla
ss

ica
l Q

uick
so

rt

Cla
ss

ica
l Q

uick
so

rt

YBB
[W

N12
]

3-
Pivo

t [K
LQ

M
14

]

op
t.

2-
Pivo

t [A
D

13
]

bes
t-k

now
n

7-
Pivo

t

M
o3

Q
S

M
o7

Q
S

op
t.

3-
Pivo

t

op
t.

7-
Pivo

t

(p
ar

t.
ex

per
.)

2 1.44..1.9 1.8 1.714 1.576

n ln n

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 46/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Summary and Research Directions

Easy-to-use formula for partitioning cost for dual-pivot quicksort

1.8n ln n + O(n) comparisons is optimal for two pivots

Exact formulas for the optimal dual-pivot strategy

Optimal strategy for k > 2, even with pivot sampling: Count.

Ongoing/Future work: Analyze Count with k > 4 pivots exactly.
(Beware: Not necessarily practically useful.)

Understand behavior of Count if repeated elements are present.

Optimal algorithms with regard to other complexity measures, more
relevant for practical performance.

Many thanks for your attention.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 47/51



Literature

Martin Aumüller, Martin Dietzfelbinger: Optimal Partitioning for
Dual-Pivot Quicksort. ACM Trans. Algorithms 12(2): 18:1-18:36
(2016)

Martin Aumüller, Martin Dietzfelbinger, Pascal Klaue: How Good Is
Multi-Pivot Quicksort? ACM Trans. Algorithms 13(1): 8:1-8:47
(2016)

Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel
Krenn, Helmut Prodinger: Counting Zeros in Random Walks on the
Integers and Analysis of Optimal Dual-Pivot Quicksort. CoRR
abs/1602.04031 (2016) (Proceedings of AofA’16)

Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel
Krenn, Helmut Prodinger: Counting Zeros in Random Walks on the
Integers and Analysis of Optimal Dual-Pivot Quicksort. CoRR
abs/1602.04031 (2016)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 48/51



Literature (cont.)
Sebastian Wild, Markus E. Nebel, Ralph Neininger: Average Case and
Distributional Analysis of Dual-Pivot Quicksort. ACM Trans.
Algorithms 11(3): 22:1-22:42 (2015) (Preliminary version in ESA
2012.)
Sebastian Wild, Markus E. Nebel, Raphael Reitzig, Ulrich Laube:
Engineering Java 7’s Dual Pivot Quicksort Using MaLiJan. ALENEX
2013: 55-69
Markus E. Nebel, Sebastian Wild, Conrado Mart́ınez: Analysis of
Pivot Sampling in Dual-Pivot Quicksort: A Holistic Analysis of
Yaroslavskiy’s Partitioning Scheme. Algorithmica 75(4): 632-683
(2016)
Conrado Mart́ınez, Markus E. Nebel, Sebastian Wild: Analysis of
Branch Misses in Quicksort. ANALCO 2015: 114-128
Sebastian Wild: Why Is Dual-Pivot Quicksort Fast? CoRR
abs/1511.01138 (2015)

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 49/51



Literature (cont.)

Sebastian Wild: Dual-Pivot Quicksort and Beyond: Analysis of
Multiway Partitioning and Its Practical Potential. PhD Thesis,
Universität Kaiserslautern, 2016

Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, J. Ian Munro:
Multi-Pivot Quicksort: Theory and Experiments. ALENEX 2014:
47-60

Charles A. R. Hoare, Quicksort, Comput. J. 5 (1962), no. 1, 10–15.

Pascal Hennequin: Analyse en moyenne d’algorithmes, tri rapide et
arbres de recherche. PhD Thesis, Palaiseau, Ecole polytechnique,
1991

Robert Sedgewick. Quicksort. PhD thesis, Stanford University,
Stanford, CA, May 1975. Stanford Computer Science Report
STAN-CS-75-492.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 50/51



Literature (cont.)

Vladimir Yaroslavskiy, Replacement of quicksort in java.util.arrays
with new dual-pivot quicksort,
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-
September/ 002630.html, 2009, Archived version of the discussion in
the OpenJDK mailing list.

Philippe Flajolet and Robert Sedgewick, Analytic combinatorics,
Cambridge University Press, Cambridge, 2009.

M. Dietzfelbinger Optimal Dual-Pivot Quicksort: Exact Comparison Count 51/51


	Memory Accesses in Multi-Pivot Quicksort

