Optimal Dual-Pivot Quicksort Exact Comparison Count

Martin Dietzfelbinger

Technische Universität Ilmenau

Based on joint work with Martin Aumüller, Daniel Krenn, Clemens Heuberger, Helmut Prodinger

FCT, Bordeaux, September 11, 2017

Classical Quicksort

Input: Distinct numbers a_1, \ldots, a_n (gross simplification!).

Classical Quicksort

Input: Distinct numbers a_1, \ldots, a_n (gross simplification!).

1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.

1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.

- 1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

- 1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

- 1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

3. Sort the two subarrays recursively.

Classical Quicksort

Input: Distinct numbers a_1, \ldots, a_n (gross simplification!).

- 1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

3. Sort the two subarrays recursively. Done.

Classical Quicksort

Input: Distinct numbers a_1, \ldots, a_n (gross simplification!).

- 1. Choose a pivot p from $\{a_1, \ldots, a_n\}$.
- 2. Partition, i.e., re-arrange elements;

cost: n-1 comparisons.

3. Sort the two subarrays recursively. Done.

Expected number of comparisons: $2n \ln n - \Theta(n)$.

Input: Distinct numbers a_1, \ldots, a_n .

Input: Distinct numbers a_1, \ldots, a_n .

1. Choose two pivots p, q with p < q.

Input: Distinct numbers a_1, \ldots, a_n .

1. Choose **two** pivots p, q with p < q.

Input: Distinct numbers a_1, \ldots, a_n .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

$$\left(\begin{array}{c|c} q$$

Details: in the **program**.

Input: Distinct numbers a_1, \ldots, a_n .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

Details: in the **program**.

Input: Distinct numbers a_1, \ldots, a_n .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

Details: in the **program**.

3. Sort the **three** subarrays recursively.

Input: Distinct numbers a_1, \ldots, a_n .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

Details: in the **program**.

3. Sort the three subarrays recursively. Done.

Input: Distinct numbers a_1, \ldots, a_n .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

Details: in the **program**.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??

Input: Distinct numbers a_1, \ldots, a_n .

- 1. Choose **two** pivots p, q with p < q.
- 2. Partition, i.e., re-arrange elements.

Partition:

Details: in the **program**.

3. Sort the three subarrays recursively. Done.

Expected number of comparisons: ??

Also interesting: Other cost measures like "swaps" or "running time".

• Input is a random permutation of $\{1, \ldots, n\}$

- Input is a random permutation of $\{1, \ldots, n\}$
- We count **comparisons**.

- Input is a random permutation of $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count

- Input is a random permutation of $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count
- Minimum (??) expected comparison count.

- Input is a random permutation of $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count
- Minimum (??) expected comparison count.
- **Not** on optimizing running time.

- Input is a random permutation of $\{1, \ldots, n\}$
- We count **comparisons**.
- Expectations of this count
- Minimum (??) expected comparison count.
- Not on optimizing running time.
- Not on concrete (implemented) algorithms.

Part 1:

• A little history

- A little history
- Model for "classification"

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

Part 2:

• "Count": An absolutely optimal partitioning strategy

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- "Count": An absolutely optimal partitioning strategy
- Exact analysis of comparisons in "count"

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- "Count": An absolutely optimal partitioning strategy
- Exact analysis of comparisons in "count"
- Other cost measures (for two and more pivots)

Part 1:

- A little history
- Model for "classification"
- Rough analysis, nearly optimal strategy

- "Count": An absolutely optimal partitioning strategy
- Exact analysis of comparisons in "count"
- Other cost measures (for two and more pivots)
- Some open problems
• R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical $QS \rightarrow$ no further investigation.

• R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS \rightarrow no further investigation.

• P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with $k \ge 1$ pivots (given as program).

- for k = 2, no improvements over $2n \ln n$ found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

• R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS \rightarrow no further investigation.

• P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with $k \ge 1$ pivots (given as program).

- for k = 2, no improvements over $2n \ln n$ found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

Topic went to sleep.

• R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS \rightarrow no further investigation.

• P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with $k \ge 1$ pivots (given as program).

- for k = 2, no improvements over $2n \ln n$ found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

Topic went to sleep.

Java 7 (2009):

Classical quicksort is replaced by a dual-pivot quicksort variant, proposed (and carefully engineered) by **Yaroslavskiy**, **Bentley**, and **Bloch** (**YBB**).

• R. Sedgewick (PhD Thesis, 1975):

Analyzed a dual-pivot algorithm (given as **program**), found it makes many more **swaps** (and comparisons) than classical QS \rightarrow no further investigation.

• P. Hennequin (PhD Thesis, 1991):

Thorough analysis of quicksort with $k \ge 1$ pivots (given as program).

- for k = 2, no improvements over $2n \ln n$ found.
- ▶ for k ≥ 3, slight improvements over 2n ln n, partitioning considered "too complicated" to give improvements.

Topic went to sleep.

Java 7 (2009):

Classical quicksort is replaced by a dual-pivot quicksort variant, proposed (and carefully engineered) by **Yaroslavskiy**, **Bentley**, and **Bloch** (**YBB**).

Experiments: YBB algorithm around 10% faster than classical QS (keys are integers or reals).

YBB partitioning as program

```
1: procedure Y-Partition(A, p, q, left, right, pos_p, pos_q)
 2: l \leftarrow left + 1; g \leftarrow right - 1; k \leftarrow 1; // pointers
 3: while k \leq g do
      if A[k] < p then
                             // small pivot first
 4:
            swap A[k] and A[1]; 1 \leftarrow 1 + 1;
 5:
        else
 6:
            if A[k] > q then
                                 // large pivot later
 7:
                while A[g] > q do // small pivot first
 8:
                   g \leftarrow g - 1;
 9:
                if k < g then
10:
                    if A[g] < p then // large pivot later
11:
                        rotate3(A[g], A[k], A[1]); 1 \leftarrow 1 + 1;
12:
13:
                    else
                        swap A[k] and A[g];
14:
                   g \leftarrow g - 1;
15:
    \mathtt{k} \leftarrow \mathtt{k} + 1:
16:
17: swap A[left] and A[1-1];
18: swap A[right] and A[g+1]; pos_p \leftarrow 1-1; pos_q \leftarrow g+1;
```

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

Our questions about constants:

• Why different?

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: **2.13***n* ln n + O(n)

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?
- Best possible?

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?
- Best possible? \leftarrow

Analysis of some dual-pivot algorithms by Wild and Nebel (2012), regarding **average comparison count**:

- YBB (simplified, omits pivot sampling): $1.9n \ln n + O(n)$
- Sedgewick: $2.13n \ln n + O(n)$

Wild, Nebel, Neininger (2015):

Distributional analysis of comparisons in YBB Dual-Pivot QS

(+ exact analysis of bytecode count).

Sebastian Wild's Thesis (2016): Wealth of analysis of quicksort with two and more pivots, **program-based**.

- Why different?
- Other possibilities?
- Best possible? \leftarrow

• Model to capture comparison count in all dual-pivot algorithms

- Model to capture comparison count in all dual-pivot algorithms
- Unified analysis

- Model to capture comparison count in all dual-pivot algorithms
- Unified analysis
- "Asymptotically optimal" algorithms

- Model to capture comparison count in all dual-pivot algorithms
- Unified analysis
- "Asymptotically optimal" algorithms

Dual-pivot quicksort recurrence: Let

 C_n = number of comparisons for sorting *n* elements

 P_n = number of comparisons for partitioning *n* elements

Dual-pivot quicksort recurrence: Let

 C_n = number of comparisons for sorting *n* elements

 P_n = number of comparisons for partitioning *n* elements

Then:

Dual-pivot quicksort recurrence: Let

 C_n = number of comparisons for sorting *n* elements P_n = number of comparisons for partitioning *n* elements

Then:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k).$$

Dual-pivot quicksort recurrence: Let

 C_n = number of comparisons for sorting *n* elements P_n = number of comparisons for partitioning *n* elements

Then:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k).$$

(Recall $C_n = \mathbb{E}(P_n) + \frac{2}{n} \sum_{k=1}^{n-1} \mathbb{E}(C_k)$ for one pivot.)

Dual-pivot quicksort recurrence: Let

 C_n = number of comparisons for sorting *n* elements P_n = number of comparisons for partitioning *n* elements

Then:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k).$$

(Recall $C_n = \mathbb{E}(P_n) + \frac{2}{n} \sum_{k=1}^{n-1} \mathbb{E}(C_k)$ for one pivot.)

Hennequin (1991) solves recurrence for "toll function" $\mathbb{E}(P_n) = an + b$ (and much more).

Wild/Nebel/Neininger (2012/2015) solve it for P_n induced by (simplified version of) YBB.

Fact (Hennequin (1991), simplified)

Average partitioning cost of $\mathbb{E}(P_n) = a \cdot n + O(1)$ leads to average sorting cost $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

(Proof: Uses generating function techniques. Btw: $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$.)

Fact (Hennequin (1991), simplified)

Average partitioning cost of $\mathbb{E}(P_n) = a \cdot n + O(1)$ leads to average sorting cost $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

(Proof: Uses generating function techniques. Btw: $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$.) Slightly more general (also in Martínez, Nebel, Wild (2014)):

If $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$, then $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

Fact (Hennequin (1991), simplified)

Average partitioning cost of $\mathbb{E}(P_n) = a \cdot n + O(1)$ leads to average sorting cost $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

(Proof: Uses generating function techniques. Btw: $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$.) Slightly more general (also in Martínez, Nebel, Wild (2014)):

If
$$\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$$
, then $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

(Proof uses Roura's "Continuous Master Theorem" from 2001.)

Fact (Hennequin (1991), simplified)

Average partitioning cost of $\mathbb{E}(P_n) = a \cdot n + O(1)$ leads to average sorting cost $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

(Proof: Uses generating function techniques. Btw: $\frac{6}{5} = (\frac{1}{2} + \frac{1}{3})^{-1}$.) Slightly more general (also in Martínez, Nebel, Wild (2014)):

If
$$\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$$
, then $\mathbb{E}(C_n) = \frac{6}{5}a \cdot n \ln n + O(n)$.

(Proof uses Roura's "Continuous Master Theorem" from 2001.)

So: What is the linear term $a \cdot n$ in $\mathbb{E}(P_n)$?

Must **classify** n - 2 entries x into three parts:

Must **classify** n - 2 entries x into three parts:

1 or 2 comparisons for x.

Must **classify** n - 2 entries x into three parts:

1 or 2 comparisons for x.

Unavoidable: 1 comparison for small/large x, 2 comparisons for medium x.

Must **classify** n - 2 entries x into three parts:

1 or 2 comparisons for x.

Unavoidable: 1 comparison for small/large x, 2 comparisons for medium x.

Extra: small x compared with q first and large x compared with p first.
The Partitioning Cost

Must classify n - 2 entries x into three parts:

1 or 2 comparisons for x.

Unavoidable: 1 comparison for small/large x, 2 comparisons for medium x.

Extra: small x compared with q first and large x compared with p first.

Partitioning strategy determines for next element x whether to compare x with p first or with q first.

Program text (YBB/Sedgewick/...) *implicitly* defines strategy.

Average Cost

For the average partitioning/classification cost $\mathbb{E}(P_n)$ we get:

 $\mathbb{E}(P_n) \approx 4/3n +$ "average number of extra comparisons"

extra :

- small x compared to q first
- large x compared to p first

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements.

(Apart from that: input random.)

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements.

(Apart from that: input random.)

• p_v : probability that node v is reached.

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.
- ℓ_v : number of "large" elements seen on path to v.

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.
- ℓ_v : number of "large" elements seen on path to v.

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.
- ℓ_v : number of "large" elements seen on path to v.

If v is labelled \mathbf{p} , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.
- ℓ_v : number of "large" elements seen on path to v.

If v is labelled \mathbf{p} , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

If v is labelled **q**, then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{s-s_{v}}{n-\operatorname{level}(v)} \approx p_{v} \cdot rac{s}{n-2}.$$

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.
- ℓ_v : number of "large" elements seen on path to v.

If v is labelled \mathbf{p} , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

" \approx " can be justified up to small error.

If v is labelled \mathbf{q} , then contribution to average number of extra comparisons is:

$$p_v \cdot rac{s-s_v}{n-\operatorname{level}(v)} \approx p_v \cdot rac{s}{n-2}.$$

v: node in classification tree.

Fix s, ℓ , the number of small resp. large elements. (Apart from that: input random.)

- p_v : probability that node v is reached.
- s_v : number of "small" elements seen on path to v.
- ℓ_v : number of "large" elements seen on path to v.

If v is labelled \mathbf{p} , then contribution to average number of extra comparisons is:

$$p_{v} \cdot rac{\ell - \ell_{v}}{n - \operatorname{level}(v)} \approx p_{v} \cdot rac{\ell}{n - 2}.$$

" \approx " can be justified up to small error.

If v is labelled \mathbf{q} , then contribution to average number of extra comparisons is:

$$p_v \cdot rac{s-s_v}{n-\operatorname{level}(v)} \approx p_v \cdot rac{s}{n-2}.$$

Average number of comparisons to larger/smaller pivot first, given s, ℓ :

$$egin{aligned} f_{s,\ell}^{\mathsf{q}} &= \sum_{v ext{ is q-node}} p_v = \mathbb{E}(\#(ext{q-nodes reached}) \mid s, \ell) \ f_{s,\ell}^{\mathsf{p}} &= \sum_{v ext{ is p-node}} p_v = \mathbb{E}(\#(ext{p-nodes reached}) \mid s, \ell). \end{aligned}$$

Average number of comparisons to larger/smaller pivot first, given s, ℓ :

$$\begin{aligned} f_{s,\ell}^{\mathsf{q}} &= \sum_{v \text{ is q-node}} p_v = \mathbb{E}(\#(\mathsf{q-nodes reached}) \mid s, \ell) \\ f_{s,\ell}^{\mathsf{p}} &= \sum p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell). \end{aligned}$$

$$f_{s,\ell}^{\mathsf{p}} = \sum_{v \text{ is p-node}} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s,$$

Lemma

Average comparison cost for classification:

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^q \cdot s + f_{s,\ell}^p \cdot \ell\right) + O(n^{1-\varepsilon}).$$

Average number of comparisons to larger/smaller pivot first, given s, ℓ :

$$\begin{array}{l} f_{s,\ell}^{\mathsf{q}} = \sum_{v \text{ is q-node}} p_v = \mathbb{E}(\#(\mathsf{q-nodes reached}) \mid s, \ell) \\ \\ f_{s,\ell}^{\mathsf{p}} = \sum_{v \in \mathbb{P}_v} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell). \end{array}$$

$$f_{s,\ell}^{\mathsf{p}} = \sum_{v \text{ is p-node}} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell).$$

Lemma

Average comparison cost for classification:

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^q \cdot s + f_{s,\ell}^p \cdot \ell\right) + O(n^{1-\varepsilon}).$$

(*Proof*: Method of bounded differences:

Behaviour of differences as expected w.h.p. in most levels of the tree.)

Average number of comparisons to larger/smaller pivot first, given s, ℓ :

$$\begin{array}{l} f_{s,\ell}^{\mathsf{q}} = \sum_{v \text{ is q-node}} p_v = \mathbb{E}(\#(\mathsf{q-nodes reached}) \mid s, \ell) \\ \\ f_{s,\ell}^{\mathsf{p}} = \sum_{v \in \mathbb{P}_v} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell). \end{array}$$

$$f_{s,\ell}^{\mathsf{p}} = \sum_{v \text{ is p-node}} p_v = \mathbb{E}(\#(\mathsf{p-nodes reached}) \mid s, \ell).$$

Lemma

Average comparison cost for classification:

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^q \cdot s + f_{s,\ell}^p \cdot \ell\right) + O(n^{1-\varepsilon}).$$

(*Proof*: Method of bounded differences:

Behaviour of differences as expected w.h.p. in most levels of the tree.)

Oblivious Strategies

Oblivious Strategies

Ignore results of previous comparisons, all nodes on one level use the same pivot first.

Examples: Always q first

Oblivious Strategies

Oblivious Strategies

Oblivious Strategies

Examples: Always q first, Alternate, Random.
$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

Oblivious Strategies

Examples: Always q first, Alternate, Random.
$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$
$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

Oblivious Strategies

Examples: Always q first, Alternate, Random.

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

$$= \frac{5}{3}n + O(n^{1-\varepsilon}).$$

Oblivious Strategies

Examples: Always q first , Alternate , Random .

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

$$= \frac{5}{3}n + O(n^{1-\varepsilon}).$$
Hence:

Oblivious Strategies

Examples: Always q first , Alternate , Random .

$$\mathbb{E}(P_n) = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \cdot \sum_{s+\ell \le n-2} (f_n^{\mathsf{q}} \cdot s + (n-2-f_n^{\mathsf{q}}) \cdot \ell) + O(n^{1-\varepsilon})$$

$$\stackrel{(\text{symmetry})}{=} \frac{4}{3}n + \frac{1}{\binom{n}{2}(n-2)} \cdot \sum_{s+\ell \le n-2} s(n-2) + O(n^{1-\varepsilon})$$

$$= \frac{5}{3}n + O(n^{1-\varepsilon}). \qquad \text{Hence:}$$

$$\mathbb{E}(C_n) = \frac{6}{5} \cdot \frac{5}{3}n \ln n + O(n) = 2n \ln n + O(n).$$

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$.

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$.

$$\mathbb{E}(P_n^{\mathcal{Y}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s\ell}{n-2} + \frac{(s+m)\ell}{n-2}\right) + O(n^{1-\varepsilon})$$

Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$.

$$\mathbb{E}(P_n^{\mathcal{Y}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s\ell}{n-2} + \frac{(s+m)\ell}{n-2}\right) + O(n^{1-\varepsilon})$$
$$= \frac{19}{12}n + O(n^{1-\varepsilon}).$$
Strategy from YBB algorithm

Whenever large entry has been seen, the next comparison is with q first.

$$f_{s,\ell}^{\mathsf{q}} = \ell$$
 and $f_{s,\ell}^{\mathsf{p}} = s + m = n - 2 - \ell$.

$$\mathbb{E}(P_n^{\mathcal{Y}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s\ell}{n-2} + \frac{(s+m)\ell}{n-2}\right) + O(n^{1-\varepsilon})$$
$$= \frac{19}{12}n + O(n^{1-\varepsilon}). \qquad \text{Hence:}$$

$$\mathbb{E}(C_n^{\mathcal{Y}}) = \frac{6}{5} \cdot \frac{19}{12} n \ln n + O(n) = 1.9 n \ln n + O(n).$$

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell} \right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell}\right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

 $\mathbb{E}(C_n^{\mathcal{S}}) = \frac{6}{5} \cdot \frac{16}{9} n \ln n + O(n) = 2.133.. \cdot n \ln n + O(n). \text{ (Also: (NW 2012).)}$

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell} \right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

 $\mathbb{E}(C_n^{\mathcal{S}}) = \frac{6}{5} \cdot \frac{16}{9} n \ln n + O(n) = 2.133.. \cdot n \ln n + O(n). \text{ (Also: (NW 2012).)}$

Simple improvement (also observed by Wild): In Sedgewick's algorithm, switch *p* and *q* in choice for first pivot.

Strategy from Sedgewick's Algorithm

$$f_{s,\ell}^{\mathsf{q}} = (n-2) \cdot s/(s+\ell)$$
 and $f_{s,\ell}^{\mathsf{p}} = (n-2) \cdot \ell/(s+\ell)$

$$\mathbb{E}(P_n^{\mathcal{S}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \left(\frac{s^2}{s+\ell} + \frac{\ell^2}{s+\ell} \right) + O(n^{1-\varepsilon}) = \frac{16}{9}n + O(n^{1-\varepsilon})$$

 $\mathbb{E}(C_n^{\mathcal{S}}) = \frac{6}{5} \cdot \frac{16}{9} n \ln n + O(n) = 2.133... \cdot n \ln n + O(n). \text{ (Also: (NW 2012).)}$

Simple improvement (also observed by Wild): In Sedgewick's algorithm, switch *p* and *q* in choice for first pivot.

$$\mathbb{E}(C_n^{S'}) = \frac{6}{5} \cdot \frac{14}{9} n \ln n + O(n) = 1.866.. \cdot n \ln n + O(n).$$

Assume: Given input and pivots, an oracle tells us whether or not $\ell > s$.

Assume: Given input and pivots, an oracle tells us whether or not $\ell > s$.

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

Assume: Given input and pivots, an oracle tells us whether or not $\ell > s$.

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

Strategy

• $\ell > s$: Compare all elements to larger pivot first $(f_{s,\ell}^{q} = n - 2)$.

Assume: Given input and pivots, an oracle tells us whether or not $\ell > s$.

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

Strategy

- $\ell > s$: Compare all elements to larger pivot first $(f_{s,\ell}^{q} = n 2)$.
- $\ell \leq s$: Compare all elements to smaller pivot first $(f_{s,\ell}^{q} = 0)$.

Assume: Given input and pivots, an oracle tells us whether or not $\ell > s$.

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

Strategy

- $\ell > s$: Compare all elements to larger pivot first $(f_{s,\ell}^{q} = n 2)$.
- $\ell \leq s$: Compare all elements to smaller pivot first $(f_{s,\ell}^{q} = 0)$.

$$\mathbb{E}(P_n^{\mathcal{I}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}}\sum_{s+\ell \le n-2}\min\{s,\ell\} + O(n^{1-\varepsilon}) = \frac{3}{2}n + O(n^{1-\varepsilon}).$$

Assume: Given input and pivots, an oracle tells us whether or not $\ell > s$.

Goal: Minimize

$$p_n = \frac{4}{3}n + \frac{1}{\binom{n}{2} \cdot (n-2)} \sum_{s+\ell \leq n-2} \left(f_{s,\ell}^{\mathsf{q}} \cdot s + (n-2-f_{s,\ell}^{\mathsf{q}}) \cdot \ell \right) + O(n^{1-\varepsilon}).$$

Strategy

- $\ell > s$: Compare all elements to larger pivot first $(f_{s,\ell}^{q} = n 2)$.
- $\ell \leq s$: Compare all elements to smaller pivot first $(f_{s,\ell}^{q} = 0)$.

$$\mathbb{E}(P_n^{\mathcal{I}}) = \frac{4}{3}n + \frac{1}{\binom{n}{2}} \sum_{s+\ell \le n-2} \min\{s,\ell\} + O(n^{1-\varepsilon}) = \frac{3}{2}n + O(n^{1-\varepsilon}).$$
$$\mathbb{E}(C_n^{\mathcal{I}}) = \frac{6}{5} \cdot \frac{3}{2}n \ln n + O(n) = 1.8n \ln n + O(n).$$

No strategy can use fewer than $1.8n \ln n - O(n)$ comparisons on average.

No strategy can use fewer than $1.8n \ln n - O(n)$ comparisons on average.

Implementation?

No strategy can use fewer than $1.8n \ln n - O(n)$ comparisons on average.

Implementation?

Random Sampling (read $n^{3/4}$ entries) to estimate if $s > \ell$ or $s \leq \ell$.

No strategy can use fewer than $1.8n \ln n - O(n)$ comparisons on average.

Implementation?

Random Sampling (read $n^{3/4}$ entries) to estimate if $s > \ell$ or $s \le \ell$. With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

No strategy can use fewer than $1.8n \ln n - O(n)$ comparisons on average.

Implementation?

Random Sampling (read $n^{3/4}$ entries) to estimate if $s > \ell$ or $s \le \ell$. With Chernoff-Hoeffding type bounds: Probability to guess wrong is small.

Average cost of random sampling algorithm: $1.8n \ln n + O(n)$.

• Find a *truly optimal* algorithm.

- Find a *truly optimal* algorithm.
- Do an exact analysis.

- Find a *truly optimal* algorithm.
- Do an exact analysis.

(From (ADHKP16).)

Assume we are in round i/level i of the tree.

Seen s_{i-1} small and ℓ_{i-1} large elements in

Assume we are in round i/level i of the tree.

Seen s_{i-1} small and ℓ_{i-1} large elements in \square

Classification Strategy:

- $\ell_{i-1} > s_{i-1}$: compare with larger pivot first.
- $\ell_{i-1} \leq s_{i-1}$: compare with smaller pivot first.

Assume we are in round i/level i of the tree.

Seen s_{i-1} small and ℓ_{i-1} large elements in

Classification Strategy:

- $\ell_{i-1} > s_{i-1}$: compare with larger pivot first.
- $\ell_{i-1} \leq s_{i-1}$: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is $1.8n \ln n + O(n)$. (O(n) away from (idealized) optimal strategy.)

Assume we are in round i/level i of the tree.

Seen s_{i-1} small and ℓ_{i-1} large elements in

Classification Strategy:

- $\ell_{i-1} > s_{i-1}$: compare with larger pivot first.
- $\ell_{i-1} \leq s_{i-1}$: compare with smaller pivot first.

Can show (AD13/16): Average sorting cost is $1.8n \ln n + O(n)$.

(O(n) away from (idealized) optimal strategy.)

Now:

"Count" is optimal + exact average comparison count (ADHKP16/17).

Proof idea for: "Count" is optimal (among all algorithms)

Distribution on $\{\sigma, \mu, \lambda\}$ -sequences generated by input and two random pivots is given by:

Each fixed sequence with s many σ 's, m many μ 's, ℓ many λ 's, with s + m + l = n - 2 appears with probability

 $\frac{1}{\binom{n}{2}}\cdot\frac{s!m!\ell!}{(n-2)!}.$

Proof idea for: "Count" is optimal (among all algorithms)

Distribution on $\{\sigma, \mu, \lambda\}$ -sequences generated by input and two random pivots is given by:

Each fixed sequence with s many σ 's, m many μ 's, ℓ many λ 's, with s + m + l = n - 2 appears with probability

 $\frac{1}{\binom{n}{2}} \cdot \frac{s!m!\ell!}{(n-2)!}.$

Reason:

Probability to have s many σ 's, m many μ 's, ℓ many λ 's is $1/\binom{n}{2}$. Every sequence with s many σ 's, m many μ 's, ℓ many λ 's has the same probability $\binom{n-2}{s,m,\ell}$.

Put one light green ball, one green ball, one dark green ball in urn.

Put one light green ball, one green ball, one dark green ball in urn.
Round i = 1, ..., n - 2:

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random.

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random.

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color c, put it back,

O Put one light green ball, one green ball, one dark green ball in urn.

2 Round i = 1, ..., n - 2:

Choose ball from urn at random. Take down its color c, put it back,

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color c, put it back, and put another ball of the same color in the urn.

 λ

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color c, put it back, and put another ball of the same color in the urn.

 λ

O Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

$$\lambda$$
 σ

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

$$\lambda$$
 σ

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

$$\lambda$$
 σ

O Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

$$\left[egin{array}{ccc} \lambda & \sigma & \mu \end{array}
ight]$$

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

$$\left[egin{array}{cccc} \lambda & \sigma & \mu \end{array}
ight]$$

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

$$\left[egin{array}{ccc} \lambda & \sigma & \mu \end{array}
ight]$$

O Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Choose ball from urn at random. Take down its color *c*, put it back, and put another ball of the same color in the urn.

$$\lambda$$
 σ μ σ

Why same distribution as "random permutation \rightarrow pivots \rightarrow relabel"?

Put one light green ball, one green ball, one dark green ball in urn.

2 Round
$$i = 1, ..., n - 2$$
:

Put one light green ball, one green ball, one dark green ball in urn.

2 Round i = 1, ..., n - 2:

Choose ball from urn at random. Take down its color c, put it back, and put another ball of the same color in the urn.

In Round *i*:

$$\Pr(\mathsf{new} \ \mathsf{element} \ \mathsf{is} \ \sigma \ (\mathsf{small})) = rac{s_{i-1}+1}{i+2}.$$

(analogous formulas for medium/large elements.) Then: induction!

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Proof: Assume e.g. $s_{i-1} \ge \ell_{i-1}$.

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Proof: Assume e.g. $s_{i-1} \ge \ell_{i-1}$. "Count" compares with small pivot first.

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Proof: Assume e.g. $s_{i-1} \ge \ell_{i-1}$. "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) = $\frac{\ell_{i-1}+1}{i+2}$.

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Proof: Assume e.g. $s_{i-1} \ge \ell_{i-1}$. "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) = $\frac{\ell_{i-1}+1}{i+2}$.

If S (based on full history up to i - 1, even using randomness) uses small pivot first, no difference.

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Proof: Assume e.g. $s_{i-1} \ge \ell_{i-1}$. "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) = $\frac{\ell_{i-1}+1}{i+2}$.

If S (based on full history up to i - 1, even using randomness) uses small pivot first, no difference.

If S takes large pivot first:

$$\Pr(\mathcal{S} \text{ gets extra comparison in step } i) = \frac{s_{i-1}+1}{i+2},$$

Claim: Every partitioning strategy S (decision in round *i* is based on the full history up to round i - 1) makes at least as many comparisons in round *i* as "Count" (on average).

Proof: Assume e.g. $s_{i-1} \ge \ell_{i-1}$. "Count" compares with small pivot first. Probability to generate additional cost 1 in this step:

Pr("Count" gets extra comparison in step i) = $\frac{\ell_{i-1}+1}{i+2}$.

If S (based on full history up to i - 1, even using randomness) uses small pivot first, no difference.

If S takes large pivot first:

$$\Pr(\mathcal{S} \text{ gets extra comparison in step } i) = \frac{s_{i-1}+1}{i+2},$$

at least as big as the probability for "Count".

Goal

Analyze "Count" exactly.

Goal

Analyze "Count" exactly.

Exact DP recurrence:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k)\mathbb{E}(C_k)$$

Goal

Analyze "Count" exactly.

Exact DP recurrence:

$$\mathbb{E}(C_n) = \mathbb{E}(P_n) + \frac{3}{\binom{n}{2}} \sum_{k=1}^{n-2} (n-1-k) \mathbb{E}(C_k)$$

(Wild 2013) showed how to solve this exactly, using **generating functions**, if $\mathbb{E}(P_n)$ is given.

Analytic function $f : \mathbb{C} \to \mathbb{C}$ (with a certain convergence radius) can be written $f(z) = \sum_{n>0} a_n z^n$, represents sequence $(a_0, a_1, a_2, ...)$.

Analytic function $f: \mathbb{C} \to \mathbb{C}$ (with a certain convergence radius) can be written $f(z) = \sum_{n \ge 0} a_n z^n$, represents sequence $(a_0, a_1, a_2, ...)$.

Example:

$$\operatorname{arctanh}(z) = \frac{1}{2} (\ln(1+z) - \ln(1-z))$$
$$= \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^n + 1}{n} z^n$$
$$= \sum_{n \ge 1} \frac{[n \text{ odd}]}{n} z^n.$$

Analytic function $f: \mathbb{C} \to \mathbb{C}$ (with a certain convergence radius) can be written $f(z) = \sum_{n \ge 0} a_n z^n$, represents sequence $(a_0, a_1, a_2, ...)$.

Example:

$$\operatorname{arctanh}(z) = \frac{1}{2} (\ln(1+z) - \ln(1-z))$$
$$= \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^n + 1}{n} z^n$$
$$= \sum_{n \ge 1} \frac{[n \text{ odd}]}{n} z^n.$$

Represents $(0, 1, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \frac{1}{7}, ...)$

Analytic function $f: \mathbb{C} \to \mathbb{C}$ (with a certain convergence radius) can be written $f(z) = \sum_{n \ge 0} a_n z^n$, represents sequence $(a_0, a_1, a_2, ...)$.

Example:

$$\operatorname{arctanh}(z) = \frac{1}{2} (\ln(1+z) - \ln(1-z))$$
$$= \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^n + 1}{n} z^n$$
$$= \sum_{n \ge 1} \frac{[n \text{ odd}]}{n} z^n.$$

Represents $(0, 1, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \frac{1}{7}, ...)$

For comparison count of sorting: $C(z) = \sum_{n \ge 0} \mathbb{E}(C_n) z^n$, for comparison count of partitioning: $P(z) = \sum_{n \ge 0} \mathbb{E}(P_n) z^n$.

(Wild 2013) showed: If $\mathbb{E}(P_n)$ and $\mathbb{E}(C_n)$ have generating functions P(z) and C(z), then

$$C(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 P''(s) \, ds \, dt.$$

For comparison count of sorting: $C(z) = \sum_{n \ge 0} \mathbb{E}(C_n) z^n$, for comparison count of partitioning: $P(z) = \sum_{n \ge 0} \mathbb{E}(P_n) z^n$.

(Wild 2013) showed: If $\mathbb{E}(P_n)$ and $\mathbb{E}(C_n)$ have generating functions P(z) and C(z), then

$$C(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 P''(s) \, ds \, dt.$$

Task: Find exact formula for $\mathbb{E}(P_n)$ (and its generating function) for strategy "Count".

For comparison count of sorting: $C(z) = \sum_{n \ge 0} \mathbb{E}(C_n) z^n$, for comparison count of partitioning: $P(z) = \sum_{n \ge 0} \mathbb{E}(P_n) z^n$.

(Wild 2013) showed: If $\mathbb{E}(P_n)$ and $\mathbb{E}(C_n)$ have generating functions P(z) and C(z), then

$$C(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 P''(s) \, ds \, dt.$$

Task: Find exact formula for $\mathbb{E}(P_n)$ (and its generating function) for strategy "Count".

Define "random walk":

$$X_i = s_i - \ell_i$$
, for $0 \le i \le n$.

Define "random walk":

$$X_i = s_i - \ell_i$$
, for $0 \le i \le n$.

Classification Strategy, round *i*:

- $X_{i-1} \ge 0$: compare with smaller pivot first.
- $X_{i-1} < 0$: compare with larger pivot first.

Define "random walk":

$$X_i = s_i - \ell_i$$
, for $0 \le i \le n$.

Classification Strategy, round *i*:

- $X_{i-1} \ge 0$: compare with smaller pivot first.
- $X_{i-1} < 0$: compare with larger pivot first.

First study simplified situation, ignore medium elements.

Define "random walk":

$$X_i = s_i - \ell_i$$
, for $0 \le i \le n$.

Classification Strategy, round *i*:

- $X_{i-1} \ge 0$: compare with smaller pivot first.
- $X_{i-1} < 0$: compare with larger pivot first.

First study simplified situation, ignore medium elements.

We classify $n' = s + \ell$ elements.

Random Walks & Analysis of Count

Random Walks & Analysis of Count

Random Walks & Analysis of Count

X_i 3 ∔ 2 1 σ 0 $\rightarrow i$ n' -1-2-3 λ $\lambda \quad \lambda \quad \lambda \quad \sigma$ $\lambda \quad \lambda$ λ σ σ σ λ σ σ σ σ σ

X_i 3 ∔ 2 1 σ 0 $\rightarrow i$ n' -1-2-3 λ λ λ σ $\lambda \quad \lambda$ λ σ λ σ σ λ σ σ σ σ σ

Observation: Extra comparison in round $i \Leftrightarrow$

Observation: Extra comparison in round $i \Leftrightarrow$ move towards zero in $X_{i-1} \to X_i$

Observation: Extra comparison in round $i \Leftrightarrow$ move towards zero in $X_{i-1} \to X_i$ or move down from a zero.

Observation: Extra comparison in round $i \Leftrightarrow$ move towards zero in $X_{i-1} \to X_i$ or move down from a zero. Easy: Exactly min $\{s, \ell\}$ many "move towards zero" situations.

Number of zeros (without time n'): $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$.

Number of zeros (without time n'): $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$.

Can only have zeros at **even** positions *i*. What is $\mathbb{E}(Z_{n'})$?

Number of zeros (without time n'): $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$. Can only have zeros at **even** positions *i*. What is $\mathbb{E}(Z_{n'})$?

$$\mathbb{E}(Z_{n'}) = \frac{1}{n'+1} \sum_{m=0}^{\lfloor n'/2 \rfloor} \sum_{\ell=m}^{n'-m} \frac{\binom{2m}{m} \binom{n'-2m}{\ell-m}}{\binom{n'}{\ell}}$$
$$= \frac{4}{n'+1} \sum_{0 \le k < \ell < \lceil n'/2 \rceil} \frac{\binom{n'}{k}}{\binom{n'}{\ell}} + [n' \text{ even}] \frac{1}{n'+1} \left(\frac{2^{n'}}{\binom{n'}{k}} - 1\right) + 1.$$

Number of zeros (without time n'): $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$. Can only have zeros at **even** positions *i*. What is $\mathbb{E}(Z_{n'})$?

$$\mathbb{E}(Z_{n'}) = \frac{1}{n'+1} \sum_{m=0}^{\lfloor n'/2 \rfloor} \sum_{\ell=m}^{n'-m} \frac{\binom{2m}{m} \binom{n'-2m}{\ell-m}}{\binom{n'}{\ell}}$$
$$= \frac{4}{n'+1} \sum_{0 \le k < \ell < \lceil n'/2 \rceil} \frac{\binom{n'}{k}}{\binom{n'}{\ell}} + [n' \text{ even}] \frac{1}{n'+1} \left(\frac{2^{n'}}{\binom{n'}{k}} - 1\right) + 1.$$

(By generting function manipulations.)

Number of zeros (without time n'): $Z_{n'} := \#\{i \mid 0 \le i \le n', X_i = 0\}$. Can only have zeros at **even** positions *i*. What is $\mathbb{E}(Z_{n'})$?

$$\mathbb{E}(Z_{n'}) = \frac{1}{n'+1} \sum_{m=0}^{\lfloor n'/2 \rfloor} \sum_{\ell=m}^{n'-m} \frac{\binom{2m}{m} \binom{n'-2m}{\ell-m}}{\binom{n'}{\ell}}$$
$$= \frac{4}{n'+1} \sum_{0 \le k < \ell < \lceil n'/2 \rceil} \frac{\binom{n'}{k}}{\binom{n'}{\ell}} + [n' \text{ even}] \frac{1}{n'+1} \left(\frac{2^{n'}}{\binom{n'}{k}} - 1\right) + 1.$$

(By generting function manipulations.)

Central observation

For each even *i*, $0 \le i \le n'$:

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Central observation

For each even *i*, $0 \le i \le n'$:

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

Central observation

For each even *i*, $0 \le i \le n'$:

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

(Hence $\mathcal{H}_{n'+1}^{\text{odd}}$ is equal to the two complicated sums!)

Central observation

For each even *i*, $0 \le i \le n'$:

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

(Hence $\mathcal{H}_{n'+1}^{\text{odd}}$ is equal to the two complicated sums!)

Background: Distribution of s_i is given by another Pólya urn experiment (two colors, initially one ball of each color; it is known that such s_i is uniform in $\{0, 1, \ldots, i\}$).

Central observation

For each even *i*, $0 \le i \le n'$:

$$\mathbb{P}(X_i=0)=\frac{1}{i+1}.$$

Hence, with linearity of expectation:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \ i \text{ even}}} rac{1}{i+1} =: \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

(Hence $\mathcal{H}_{n'+1}^{\text{odd}}$ is equal to the two complicated sums!)

Background: Distribution of s_i is given by another Pólya urn experiment (two colors, initially one ball of each color; it is known that such s_i is uniform in $\{0, 1, \ldots, i\}$).

Have seen:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \\ i \text{ even}}} \frac{1}{i+1} = \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

Have seen:

$$\mathbb{E}(Z_{n'}) = \sum_{\substack{0 \leq i \leq n' \\ i \text{ even}}} \frac{1}{i+1} = \mathcal{H}_{n'+1}^{\mathsf{odd}}.$$

For "moves down from zero" use symmetry: "up from zero" has same probability as "down from zero". No "down from zero" at position n'. Thus:

$$\mathbb{E}(\#(\mathsf{extra comp's}) \mid s + \ell = n') = \min(s, \ell) + \frac{1}{2} \left(\mathbb{E}(Z_{n'}) - \frac{[n' \text{ even}]}{n' + 1} \right).$$

Back to general situation including medium elements. Averaging over all $\binom{n}{2}$ pivot choices and adding $\frac{4}{3}(n-2) + 1$ "forced" comparisons yields:

$$\mathbb{E}(P_n^{\rm ct}) = \frac{3n}{2} + \frac{1}{2}\mathcal{H}_n^{\rm odd} - \frac{19}{8} - \frac{3[n \text{ odd}]}{8n} - \frac{[n \text{ even}]}{8(n-1)}.$$

Back to general situation including medium elements. Averaging over all $\binom{n}{2}$ pivot choices and adding $\frac{4}{3}(n-2) + 1$ "forced" comparisons yields:

$$\mathbb{E}(P_n^{\rm ct}) = \frac{3n}{2} + \frac{1}{2}\mathcal{H}_n^{\rm odd} - \frac{19}{8} - \frac{3[n \text{ odd}]}{8n} - \frac{[n \text{ even}]}{8(n-1)}.$$

We can "easily" write down the generating function, term by term:

$$P^{\mathsf{ct}}(z) = \frac{3}{2(1-z)^2} + \frac{\arctan(z)}{2(1-z)} - \frac{31z^2}{8(1-z)} - \frac{3+z}{8} \operatorname{arctanh}(z) - \frac{3}{2} - \frac{25z}{8}.$$

Back to general situation including medium elements. Averaging over all $\binom{n}{2}$ pivot choices and adding $\frac{4}{3}(n-2) + 1$ "forced" comparisons yields:

$$\mathbb{E}(P_n^{\rm ct}) = \frac{3n}{2} + \frac{1}{2}\mathcal{H}_n^{\rm odd} - \frac{19}{8} - \frac{3[n \text{ odd}]}{8n} - \frac{[n \text{ even}]}{8(n-1)}.$$

We can "easily" write down the generating function, term by term:

$$P^{\mathsf{ct}}(z) = \frac{3}{2(1-z)^2} + \frac{\arctan(z)}{2(1-z)} - \frac{31z^2}{8(1-z)} - \frac{3+z}{8} \operatorname{arctanh}(z) - \frac{3}{2} - \frac{25z}{8}.$$

Now solving

$$C^{\rm ct}(z) = (1-z)^3 \int_0^z (1-t)^{-6} \int_0^t (1-s)^3 (P^{\rm ct})''(s) \, ds \, dt$$

by integration (for each term separately) gives $C^{ct}(z)$ and then a fully explicit formula for $\mathbb{E}(C_n^{ct})$.

Expected number of comparisons:

$$\mathbb{E}(C_n) = \frac{9}{5}nH_n - \frac{1}{5}nH_n^{\text{alt}} - \frac{89}{25}n + \frac{67}{40}H_n - \frac{3}{40}nH_n^{\text{alt}} - \frac{83}{800} + \frac{(-1)^n}{10} \\ - \frac{[n \text{ even}]}{320}\left(\frac{1}{n-3} + \frac{3}{n-1}\right) + \frac{[n \text{ odd}]}{320}\left(\frac{3}{n-2} + \frac{1}{n}\right),$$

with $H_n^{\text{alt}} = \sum_{1 \le i \le n} \frac{(-1)^i}{i} \quad (\to \ln 2).$
 $\mathbb{E}(C_n) = 1.8n \ln n + An + B \ln n + C + \frac{D}{n} + O\left(\frac{1}{n^2}\right),$
where $A \approx -2.38, B = 1.675, C \approx 1.82, D = 0.6875.$

Comparisons in Experiments

Running Time Experiments

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot.

YBB: Take second and forth smallest of five entries as pivots.

Can show with urn model: "Count" is optimal also in this case.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot. YBB: Take second and forth smallest of five entries as pivots. Can show with urn model: "Count" is optimal also in this case. No exact analysis available.

Enhanced Classical Quicksort: Take Median-of-Three as Pivot. YBB: Take second and forth smallest of five entries as pivots. Can show with urn model: "Count" is optimal also in this case. No exact analysis available.

Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of $\{1, \ldots, n\}$.

Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of $\{1, \ldots, n\}$. First k entries are pivots p_1, \ldots, p_k . Can ignore sorting of the pivots.

Remarks on Quicksort with k > 2 Pivots

Input: Random permutation of $\{1, \ldots, n\}$. First k entries are pivots p_1, \ldots, p_k . Can ignore sorting of the pivots. Classification: Split n - k remaining entries into k + 1 classes

Sizes of A_0, \ldots, A_k : a_0, \ldots, a_k . Then sort classes recursively.

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$, then

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$, then

$$\mathbb{E}(C_n) = \frac{1}{H_{k+1}-1} \cdot a \cdot n \ln n + O(n),$$

for $H_{k+1} = \sum_{i=1}^{k+1} (1/i)$.

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$, then

$$\mathbb{E}(C_n) = \frac{1}{H_{k+1}-1} \cdot a \cdot n \ln n + O(n),$$

for $H_{k+1} = \sum_{i=1}^{k+1} (1/i)$.

So again: Only design and analyze classification strategy.

(Hennequin, 1991) or Roura's C.M.T.

If partitioning cost is $\mathbb{E}(P_n) = a \cdot n + O(n^{1-\varepsilon})$, then

$$\mathbb{E}(C_n) = \frac{1}{H_{k+1}-1} \cdot a \cdot n \ln n + O(n),$$

for $H_{k+1} = \sum_{i=1}^{k+1} (1/i)$.

So again: Only design and analyze classification strategy. Necessary comparisons: 1 for A_0 , A_k and 2 for A_1, \ldots, A_{k-1} . Count "extra" comparisons!

Classification Using Comparison Trees

 $\cot_T(a_0, a_1, a_2, a_3) = a_0 + a_3$. $\cot_T(a_0, a_1, a_2, a_3) = a_2 + 2a_3$. Which tree is best depends on class sizes $|A_0|, \dots, |A_k|$.

Good 3-Pivot Algorithm

Balanced Tree (Kushagra, López-Ortiz, Qiao, Munro 2014)

Always compare with p_2 first.

1.846*n* ln *n* comparisons.

With good implementation: Quite good practical performance (even slightly better than YBB algorithm).

Optimal: Count

- Keep track of sizes $|A_0^i|$, $|A_1^i|$, ..., $|A_k^i|$ of elements seen by round *i*.
- Use comparison tree optimal for estimated class sizes.

Optimal: Count

- Keep track of sizes $|A_0^i|$, $|A_1^i|$, ..., $|A_k^i|$ of elements seen by round *i*.
- Use comparison tree optimal for estimated class sizes.

Determining optimal comparison tree is very expensive – usually impractical.

• Easy-to-use formula for partitioning cost for dual-pivot quicksort

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
Summary and Research Directions

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
- Understand behavior of Count if repeated elements are present.

Summary and Research Directions

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
- Understand behavior of Count if repeated elements are present.
- Optimal algorithms with regard to other complexity measures, more relevant for practical performance.

Summary and Research Directions

- Easy-to-use formula for partitioning cost for dual-pivot quicksort
- $1.8n \ln n + O(n)$ comparisons is optimal for two pivots
- Exact formulas for the optimal dual-pivot strategy
- Optimal strategy for k > 2, even with pivot sampling: Count.
- Ongoing/Future work: Analyze Count with k > 4 pivots exactly. (Beware: Not necessarily practically useful.)
- Understand behavior of Count if repeated elements are present.
- Optimal algorithms with regard to other complexity measures, more relevant for practical performance.

Many thanks for your attention.

Literature

- Martin Aumüller, Martin Dietzfelbinger: Optimal Partitioning for Dual-Pivot Quicksort. ACM Trans. Algorithms 12(2): 18:1-18:36 (2016)
- Martin Aumüller, Martin Dietzfelbinger, Pascal Klaue: How Good Is Multi-Pivot Quicksort? ACM Trans. Algorithms 13(1): 8:1-8:47 (2016)
- Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel Krenn, Helmut Prodinger: Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort. CoRR abs/1602.04031 (2016) (Proceedings of AofA'16)
- Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel Krenn, Helmut Prodinger: Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort. CoRR abs/1602.04031 (2016)

Literature (cont.)

- Sebastian Wild, Markus E. Nebel, Ralph Neininger: Average Case and Distributional Analysis of Dual-Pivot Quicksort. ACM Trans. Algorithms 11(3): 22:1-22:42 (2015) (Preliminary version in ESA 2012.)
- Sebastian Wild, Markus E. Nebel, Raphael Reitzig, Ulrich Laube: Engineering Java 7's Dual Pivot Quicksort Using MaLiJan. ALENEX 2013: 55-69
- Markus E. Nebel, Sebastian Wild, Conrado Martínez: Analysis of Pivot Sampling in Dual-Pivot Quicksort: A Holistic Analysis of Yaroslavskiy's Partitioning Scheme. Algorithmica 75(4): 632-683 (2016)
- Conrado Martínez, Markus E. Nebel, Sebastian Wild: Analysis of Branch Misses in Quicksort. ANALCO 2015: 114-128
- Sebastian Wild: Why Is Dual-Pivot Quicksort Fast? CoRR abs/1511.01138 (2015)

Literature (cont.)

- Sebastian Wild: Dual-Pivot Quicksort and Beyond: Analysis of Multiway Partitioning and Its Practical Potential. PhD Thesis, Universität Kaiserslautern, 2016
- Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, J. Ian Munro: Multi-Pivot Quicksort: Theory and Experiments. ALENEX 2014: 47-60
- Charles A. R. Hoare, Quicksort, Comput. J. 5 (1962), no. 1, 10–15.
- Pascal Hennequin: Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche. PhD Thesis, Palaiseau, Ecole polytechnique, 1991
- Robert Sedgewick. Quicksort. PhD thesis, Stanford University, Stanford, CA, May 1975. Stanford Computer Science Report STAN-CS-75-492.

Literature (cont.)

- Vladimir Yaroslavskiy, Replacement of quicksort in java.util.arrays with new dual-pivot quicksort, http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/ 002630.html, 2009, Archived version of the discussion in the OpenJDK mailing list.
- Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009.