On $\Sigma \wedge \Sigma \wedge \Sigma$ Circuits: The Role of Middle Σ Fan-in, Homogeneity and Bottom Degree

Chrisitan Engels Raghavendra Rao B V Karteek Sreenivasaiah

FCT 2017

Definitions

Definition

Arithmetic Circuit over $\langle \mathbb{K}, +, \times \rangle$

Directed acyclic graph C where nodes are labelled with $\{+, \times, x_1, \dots, x_n\} \cup \mathbb{K}$.

Definitions

Definition

Arithmetic Circuit over $\langle \mathbb{K}, +, \times \rangle$

Directed acyclic graph C where nodes are labelled with $\{+, \times, x_1, \dots, x_n\} \cup \mathbb{K}$.

▶ A node of out-degree zero, called output node of the circuit

Definitions

Definition

Arithmetic Circuit over $\langle \mathbb{K}, +, \times \rangle$

Directed acyclic graph C where nodes are labelled with $\{+, \times, x_1, \dots, x_n\} \cup \mathbb{K}$.

- ► A node of out-degree zero, called output node of the circuit
- ▶ $\{x_1, \dots, x_n\}$ are the inputs for the circuit, where $x_i \in \mathbb{K}$

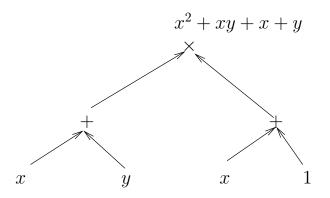


Figure: An arithmetic circuit, computing the polynomial $x^2 + xy + x + y$

Resource Measures

size: Number of nodes and edges in the circuit.

Resource Measures

- size: Number of nodes and edges in the circuit.
- depth length of longest path from an input node to the output node

Resource Measures

- size: Number of nodes and edges in the circuit.
- depth length of longest path from an input node to the output node

These parameters are generally measured in terms of the number of variables.

Conjecture (Valiant's Hypothesis)

For infonitely many $n \ge 0$ the polynomial

$$perm_n = \sum_{\sigma \in S_n} \prod_i x_{i,\sigma(i)}$$

does not have polynomial size arithmetic circuits.

Depth: Are shallow circuits powerful?

▶ Poly size circuits computing polynomials of poly degree = log depth circuits with unbounded Σ fan in [Valiant Skyum Berkowitz Rackoff 1981]

Depth: Are shallow circuits powerful?

- Poly size circuits computing polynomials of poly degree = log depth circuits with unbounded Σ fan in [Valiant Skyum Berkowitz Rackoff 1981]
- ▶ Poly size circuits computing polynomials of degree $d \subseteq Depth$ 4 $\Sigma\Pi\Sigma\Pi$ circuits of size $n^{\sqrt{d}}$ [Agrawal-Vinay 2008, the best bound by [Tavenas 2013].

Depth: Are shallow circuits powerful?

- Poly size circuits computing polynomials of poly degree $= \log \frac{1}{2}$ depth circuits with unbounded Σ fan in [Valiant Skyum Berkowitz Rackoff 1981]
- Poly size circuits computing polynomials of degree $d \subseteq Depth$ 4 $\Sigma\Pi\Sigma\Pi$ circuits of size $n^{\sqrt{d}}$ [Agrawal-Vinay 2008, the best bound by [Tavenas 2013].
- Poly size circuits computing polynomials of degree $d\subseteq Depth$ 4 $\Sigma\Pi\Sigma$ circuits of size $n^{\sqrt{d}}$ over large fields. [Gupta Kamat Kayal Saptharishi 2013]

Constant depth circuits with powering gates

▶ Powering gate $\wedge^i g$ computes the polynomial g^i .

Constant depth circuits with powering gates

- ▶ Powering gate $\wedge^i g$ computes the polynomial g^i .
- ▶ Bounded fain-in × gates can be replaced with ∧ gates: $f \cdot g = ((f+g)^2 (f-g)^2)/4$.

Question

Convert Π gates of unbounded fan-in to circuit with only \wedge and Σ gates?

Constant depth circuits with powering gates

- ▶ Powering gate $\wedge^i g$ computes the polynomial g^i .
- ▶ Bounded fain-in × gates can be replaced with ∧ gates: $f \cdot g = ((f+g)^2 (f-g)^2)/4$.

Question

Convert Π gates of unbounded fan-in to circuit with only \wedge and Σ gates?

Fischer's Identity

Theorem (Fischer 94)

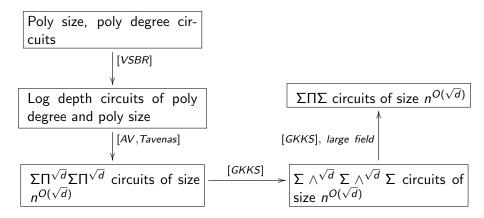
There are homogeneous linear forms $\ell_1, \ell_2, \dots, \ell_{2^n}$ such that

$$x_1 \cdot x_2 \cdots x_n = \sum_{i=1}^{2^n} \ell_i^n.$$

Corollary

A polynomial computable by a $\Sigma\Pi^k\Sigma\Pi^k\Sigma$ circuit of size s can be computed by as $\Sigma \wedge^k\Sigma \wedge^k\Sigma$ circuit of size $s\cdot 2^k$.

Depth five circuits with ∧ gates



Lower bounds against shallow circuits

- Any homogeneous $\Sigma\Pi^{\sqrt{n}}\Sigma\Pi^{\sqrt{n}}$ circuit computing permanent requires size $2^{\Omega\sqrt{n}}$. [Gupta et al 13, extended to other polynomials later.]
- ▶ A $\omega(\log n)$ factor improvement in the above would resolve Valiant's hypothesis.
- ▶ Best known lower bound against ΣΠΣ circuits over infinite fields is $\Omega(n^3/(\log n)^2)$ [Kayal Saha Tavenas]
- ▶ No known lower bounds against depoth five circuits with powering gates.

Our Results

Theorem (1)

Let $g = \sum_{i=1}^{s} f_i^{\alpha_i}$ where $f_i = \ell_{i_1}^{d_i} + \dots + \ell_{i_n}^{d_i} + \beta_i$ for some scalars β_i and for every i, either $d_i = 1$ or $d_i \geq 21$ and $\ell_{i_1}, \dots, \ell_{i_n}$ are homogeneous linear forms. If $g = x_1 \cdot x_2 \cdots x_n$ then $s = 2^{\Omega(n)}$.

Our Results

Theorem (1)

Let $g = \sum_{i=1}^{s} f_i^{\alpha_i}$ where $f_i = \ell_{i_1}^{d_i} + \dots + \ell_{i_n}^{d_i} + \beta_i$ for some scalars β_i and for every i, either $d_i = 1$ or $d_i \geq 21$ and $\ell_{i_1}, \dots, \ell_{i_n}$ are homogeneous linear forms. If $g = x_1 \cdot x_2 \cdots x_n$ then $s = 2^{\Omega(n)}$.

Theorem (2)

Let $g = \sum_{i=1}^{s} f_i^{\alpha_i}$ where $f_i = \sum_{j=1}^{N_i} \ell_{i_j}^{d_i} + \beta_i$, for some scalars β_i and $\sqrt{n} \le d_i \le n$, $N_i \le 2^{\sqrt{n}/1000}$, and $\ell_{i_1}, \dots, \ell_{i_{N_i}}$ are homogeneous linear forms. If $g = x_1 \cdot x_2 \cdots x_n$ then $s = 2^{\Omega(n)}$.

Proof approach

▶ Obtain a measure $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ such that

$$\mu(f_1+\cdots+f_s) \leq \mu(f_1)+\cdots+\mu(f_s)$$

Proof approach

▶ Obtain a measure $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ such that

$$\mu(f_1+\cdots+f_s)\leq \mu(f_1)+\cdots+\mu(f_s)$$

For a polynomial $f_i \in \wedge \Sigma \wedge \Sigma$, assume that $\mu(f_i) \leq t$.

Proof approach

▶ Obtain a measure $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ such that

$$\mu(f_1+\cdots+f_s)\leq \mu(f_1)+\cdots+\mu(f_s)$$

For a polynomial $f_i \in \wedge \Sigma \wedge \Sigma$, assume that $\mu(f_i) \leq t$. Then

$$\mu(f_1+\ldots+f_s)\leq s\cdot t.$$

Additionally, if $\mu(g) \ge R$ for some polynomial g we have,

$$s \geq R/t$$
.

Our Measure: Projected Multilinear derivatives

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$.

- ▶ $S \subseteq \{x_1, ..., x_n\}$, let $\pi_S : \mathbb{F}[x_1, ..., x_n] \to \mathbb{F}[x_1, ..., x_n]$ be the projection map that sets all variables in S to zero.
- Let $\pi_m(f)$ denote the projection of f onto its multilinear monomials

Definition

For $S \subseteq \{1, ..., n\}$ and $0 < k \le n$, the dimension of Projected Multilinear Derivatives (PMD) of a polynomial f is defined as:

$$\mathsf{PMD}^k_{\mathsf{S}}(f) \triangleq \mathsf{dim}(\mathbb{F}\operatorname{\mathsf{-Span}}\left\{\pi_{\mathsf{S}}(\pi_{\mathsf{m}}(\partial_{\mathsf{ML}}^{=k}f))\right\}).$$

Hard polynomial

Lemma

For any
$$S\subseteq\{x_1,\ldots,x_n\}$$
, $|S|=n/2+1$, and $k=3n/4$
$$\mathsf{PMD}_S^k(x_1\ldots x_n)\geq \binom{n/2-1}{n/4}=2^{\Omega(n)}.$$

Structure of projected multilinear derivatives

Lemma

Suppose that $f=(\ell_1^d+\ldots+\ell_n^d+\beta)$. Let $Y=\{\ell_i^{d-j}\mid 1\leq i\leq n, 1\leq j\leq d\}$ and $\lambda=1/4+\varepsilon$ for some $0<\varepsilon<1/4$. Then, for k=3n/4 and any $S\subseteq\{1,\ldots,n\}$ with |S|=n/2+1, we have:

$$\pi_{S}(\pi_{\mathsf{m}}(\partial_{\mathsf{ML}}^{=k}f^{\alpha}) \subseteq \mathbb{F}\operatorname{-Span}\left\{\pi_{S}(\pi_{\mathsf{m}}(\mathcal{F}\odot\left(\mathcal{X}_{\lambda_{n}}^{n/2-1}(\overline{S})\cup\mathcal{M}_{\leq(1+\varepsilon)n/d}(Y)\right)))\right\}$$
 where $\mathcal{F}=\cup_{i=1}^{k}f^{\alpha-i}$ and $\overline{S}=\{1,\ldots,n\}\setminus S$.

An upper bound for the measure

- ▶ By Lemma, $\mathsf{PMD}_{S}^{k}(f^{\alpha}) \leq k \cdot (|\mathcal{X}_{\lambda n}^{n/2-1}(\overline{S})| + |\mathcal{M}_{\leq (1+\varepsilon)n/d}(Y)|).$
- ▶ For $1/4 < \lambda < 1/2$,

$$|\mathcal{X}_{\lambda n}^{n/2-1}(\overline{S})| \leq O(n/2 \cdot {n/2 \choose \lambda n}) \leq 2^{.498n}.$$

Also,

$$|\mathcal{M}_{\leq (1+\varepsilon)n/d}(Y)| = \binom{|Y| + (1+\epsilon)n/d}{(1+\epsilon)n/d} \leq 2^{.4995n} \text{ for } d \geq 21.$$

▶ Therefore, $PMD_S^k(f^{\alpha}) \leq 2^{.4995n}$.

Further work

- ► Chillara and Saptharishi Simplified the arguments and generalized to non-homogeneous circuits.
- ▶ Theorem (1) holds for $d \ge 10$.

Future Directions

- ▶ Obtain lower bound for non-homogeneous $\Sigma \land \Sigma \land \Sigma$ circuits.
- ▶ Obtain a complexity measure μ for polynomial such that $\mu(f^{\alpha}) \leq poly(\mu(f))$.

Thank You!!