The Complexity of Routing with Few Collisions

Till Fluschnik, Marco Morik and Manuel Sorge

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

21st International Symposium on Fundamentals of Computation Theory, September 11th, 2017 Bordeaux

Example

Example

Fast Routing with Collision Avoidance (FRCA)

Input: A graph G = (V, E), source and sink $s, t \in V$, number of paths p, number of time-shared edges k, length ℓ .

Problem Definition

Fast Routing with Collision Avoidance (FRCA)

Problem Definition

Fast Routing with Collision Avoidance (FRCA)

Input: A graph G = (V, E), source and sink $s, t \in V$, number of paths p, number of time-shared edges k, length ℓ . **Question:** Are there p s-t-routes of length at most ℓ in G that time-share at most k edges?

s-t-routes:

• Walk: Sequence of vertices: $P = (v_1, v_2, \dots, v_n)$ s.t. $\forall i \in [1, n-1] : \{v_i, v_{i+1}\} \in E, v_1 = s, v_n = t$

Problem Definition

Fast Routing with Collision Avoidance (FRCA)

Input: A graph G = (V, E), source and sink $s, t \in V$, number of paths p, number of time-shared edges k, length ℓ . **Question:** Are there p s-t-routes of length at most ℓ in G that time-share at most k edges?

s-t-routes:

- Walk: Sequence of vertices: $P = (v_1, v_2, \dots, v_n)$ s.t. $\forall i \in [1, n-1] : \{v_i, v_{i+1}\} \in E, v_1 = s, v_n = t$
- Trail: A walk with each edge at most once

Problem Definition

Fast Routing with Collision Avoidance (FRCA)

Input: A graph G = (V, E), source and sink $s, t \in V$, number of paths p, number of time-shared edges k, length ℓ . **Question:** Are there p s-t-routes of length at most ℓ in G that time-share at most k edges?

s-t-routes:

- Walk: Sequence of vertices: $P = (v_1, v_2, \dots, v_n)$ s.t. $\forall i \in [1, n-1] : \{v_i, v_{i+1}\} \in E, v_1 = s, v_n = t$
- Trail: A walk with each edge at most once
- Path: A walk with each vertex at most once

Fast Routing with Collision Avoidance (FRCA)

Input: A graph G = (V, E), source and sink $s, t \in V$, number of paths p, number of time-shared edges k, length ℓ . **Question:** Are there p *s*-*t*-routes of length at most ℓ in G that time-share at most k edges?

An edge *e* is time-shared, if there are at least 2 *s*-*t*-routes in the solution of **FRCA** $P_1 = (v_1, \ldots, v_a), P_2 = (u_1, \ldots, u_a)$: $\exists i : e = \{v_i, v_{i+1}\} = \{u_i, u_{i+1}\}$

Fast Routing with Collision Avoidance (FRCA)

Miniumum Shared Edges

• NP-complete on directed graphs

[Omran et al.: JoCO, 2013]

Miniumum Shared Edges

- NP-complete on directed graphs
- NP-complete on undirected graphs W[2]-hard with respect to k
 FPT with respect to p

[Omran et al.: JoCO, 2013]

[Fluschnik et al.: FSTTCS, 2015]

Miniumum Shared Edges

- NP-complete on directed graphs
- NP-complete on undirected graphs W[2]-hard with respect to *k* FPT with respect to *p*

[Omran et al.: JoCO, 2013]

[Fluschnik et al.: FSTTCS, 2015]

Ø Edge-disjoint paths in temporal graphs [Kempe et al.: JoCaSS, 2002]

Miniumum Shared Edges

- NP-complete on directed graphs
- NP-complete on undirected graphs W[2]-hard with respect to k FPT with respect to p

[Omran et al.: JoCO, 2013]

[Fluschnik et al.: FSTTCS, 2015]

Edge-disjoint paths in temporal graphs [Kempe et al.: JoCaSS, 2002] Oynamic flow

[Ford and Fulkerson: PUP, 1962]

Overview

Overview

	Undirected, with k Directed, with k DAGs, with k
	const. unbound const. unbound const. unbound
Path- FRCA	
Trail₋ FRCA	
Walk- RCA	
Walk₋ FRCA	

k = #(shared edges)

Overview

Overview

	Undirect	ed, with <i>k</i>	Directed	l, with <i>k</i>	DAGs, with <i>k</i>
	const.	unbound	const.	unbound	const. unbound
Path- FRCA	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4\end{array}$	${f NP}$ -c, $k\geq 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	
Trail- FRCA	NP-c, <i>k</i> ≥ 0	NP-c, $\Delta \geq 5$	NP-c, <i>k</i> ≥ 0	$\begin{array}{l} NP-c,\\ \Delta\geq3 \end{array}$	
Walk- RCA					
Walk- FRCA					

$$\Delta = \max \text{ Deg.} \quad k = \#(\text{shared edges})$$

Planar Hamiltonian Cycle

Planar Hamiltonian Cycle (PHC)

Given: An undirected, planar, and cubic graph G = (V, E). **Question:** Is there a cycle in *G* visiting each vertex in *V* exactly once?

NP-complete [Garey et al.: SICOMP, 1976]

Planar Hamiltonian Cycle

Planar Hamiltonian Cycle (PHC)

Given: An undirected, planar, and cubic graph G = (V, E). **Question:** Is there a cycle in *G* visiting each vertex in *V* exactly once?

NP-complete [Garey et al.: SICOMP, 1976]

Computational Complexity Path-RCA

Reduction from **PHC** to **Path-RCA** with k = 0

11.09.2017 7 / 15

- # of paths p = n 1 = 3
- # of shared edges k = 0

- # of paths p = n 1
- # of shared edges k = 0

- # of paths p = 2n
- # of shared edges k = 0

- # of paths p = 2n
- # of shared edges k = 0

- # of paths p = 2n
- # of shared edges k = 0

- # of paths p = 2n
- # of shared edges k = 0

- # of paths p = 2n
- # of shared edges k = 0

- # of paths p = 2n
- # of shared edges k = 0

Polynomial Results on DAGs

	Undirec	Undirected, with k		Directed, with <i>k</i>		DAGs, with <i>k</i>	
	const.	unbound	const.	unbound	const.	unbound	
Path- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \ge 4$	NP-c, <i>k</i> ≥ 0	NP-c, $\Delta \ge 4$	Р		
Trail- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \geq 5$	NP-c, $k \ge 0$	NP-c, $\Delta \ge 3$	Р		
Walk- RCA					Р		
Walk- FRCA					Р		

The Complexity of Routing with Few Collisions

(F)RCA on Directed Acyclic Graphs for const. k

In acyclic graphs, no vertex can appear twice in an *s*-*t*-route \implies Walk = Trail = Path

(F)RCA on Directed Acyclic Graphs for const. k

In acyclic graphs, no vertex can appear twice in an *s*-*t*-route \implies Walk = Trail = Path In directed graphs, arcs can only be shared in one direction

(F)RCA on Directed Acyclic Graphs for const. k

11.09.2017 12 / 15

(F)RCA on Directed Acyclic Graphs for const. k

The Complexity of Routing with Few Collisions

(F)RCA on Directed Acyclic Graphs for const. k

(F)RCA on Directed Acyclic Graphs for const. k

Maximum flow in G': $\mathcal{O}(n'm')$

(F)RCA on Directed Acyclic Graphs for const. k

Running time in G: $\mathcal{O}(n^3m \cdot m^k)$

	Undirec	ted, with <i>k</i>	Directed	d, with <i>k</i>	DAGs, with <i>k</i>	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \geq 4$	NP-c, $k \ge 0$	NP-c, $\Delta \geq 4$	Ρ	
Trail- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \geq 5$	${f NP}$ -c, $k\geq 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 3\end{array}$	Ρ	
Walk- RCA					Ρ	
Walk- FRCA					Ρ	

	Undirec	ted, with <i>k</i>	Directed	d, with <i>k</i>	DAGs, with k	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \ge 4$	NP-c, $k \ge 0$	NP-c, $\Delta \geq 4$	Ρ	
Trail- FRCA	$NP ext{-c},\ k\geq 0$	NP-c, $\Delta \geq 5$	${f NP}$ -c, $k\geq 0$	NP-c, $\Delta \geq 3$	Ρ	
Walk- RCA			Ρ		Ρ	
Walk- FRCA			Ρ		Ρ	

	Undirec	ted, with <i>k</i>	Directed	d, with <i>k</i>	DAGs, with k	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \ge 4$	NP-c, $k \ge 0$	NP-c, $\Delta \geq 4$	Ρ	
Trail- FRCA	$NP ext{-c},\ k\geq 0$	NP-c, $\Delta \geq 5$	$NP-c, k \ge 0$	NP-c, $\Delta \geq 3$	Ρ	
Walk- RCA	Ρ	Р	Ρ		Ρ	
Walk- FRCA			Ρ		Ρ	

	Undirect	ted, with <i>k</i>	Directed	l, with <i>k</i>	DAGs, with <i>k</i>	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	NP-c, $k \ge 0$	NP-c, $\Delta \ge 4$	Р	NP-c, W[2]-hard
Trail- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \geq 5$	NP-c, $k \ge 0$	NP-c, $\Delta \geq 3$	Ρ	NP-c, W[2]-hard
Walk- RCA	Ρ	Ρ	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard
Walk- FRCA		NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard

	Undirect	ted, with <i>k</i>	Directed	l, with <i>k</i>	DAGs, with <i>k</i>	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	NP-c, $k \ge 0$	NP-c, $\Delta \ge 4$	Р	NP-c, W[2]-hard
Trail- FRCA	NP-c, $k \ge 0$	NP-c, $\Delta \geq 5$	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq3 \end{array}$	Ρ	NP-c, W[2]-hard
Walk- RCA	Ρ	Ρ	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard
Walk- FRCA	open	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard	Р	NP-c, W[2]-hard

Challenges for Future Research

	Undirec	ted, with <i>k</i>	Directed	d, with <i>k</i>	DAGs, with k	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	Ρ	NP-c, W[2]-hard
Trail- FRCA	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta \geq 5 \end{array}$	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 3 \end{array}$	Ρ	NP-c, W[2]-hard
Walk- RCA	Ρ	Ρ	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard
Walk- FRCA	open	NP-c, W[2]-hard	Р	NP-c, W[2]-hard	Р	NP-c, W[2]-hard

• Walk-FRCA NP-complete for constant k?

Challenges for Future Research

	Undirec	ted, with <i>k</i>	Directed	l, with <i>k</i>	DAGs, with k	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	${f NP}$ -c, $k\geq 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	Ρ	NP-c, W[2]-hard
Trail- FRCA	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta \geq 5 \end{array}$	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq3 \end{array}$	Ρ	NP-c, W[2]-hard
Walk- RCA	Ρ	Ρ	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard
Walk- FRCA	open	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard

- Walk-FRCA NP-complete for constant k?
- Complexity when restricting the number of routes p

Challenges for Future Research

	Undirec	ted, with <i>k</i>	Directed	l, with <i>k</i>	DAGs, with k	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	${f NP}$ -c, $k\geq 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 4 \end{array}$	Ρ	NP-c, W[2]-hard
Trail- FRCA	$NP-c, k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta \geq 5 \end{array}$	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 3 \end{array}$	Ρ	NP-c, W[2]-hard
Walk- RCA	Ρ	Ρ	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard
Walk- FRCA	open	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard

- Walk-FRCA NP-complete for constant k?
- Complexity when restricting the number of routes p
- FPT for combined parameter $(\Delta + k)$

Future Work

Challenges for Future Research

	Undirec	ted, with <i>k</i>	Directed	d, with <i>k</i>	DAGs, with k	
	const.	unbound	const.	unbound	const.	unbound
Path- FRCA	NP-c, <i>k</i> ≥ 0	NP-c, $\Delta \ge 4$	NP-c, $k \ge 0$	NP-c, $\Delta \ge 4$	Р	NP-c, W[2]-hard
Trail- FRCA	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta \geq 5 \end{array}$	NP-c, $k \ge 0$	$\begin{array}{l} NP-c,\\ \Delta\geq 3 \end{array}$	Ρ	NP-c, W[2]-hard
Walk- RCA	Ρ	Ρ	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard
Walk- FRCA	open	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard	Ρ	NP-c, W[2]-hard

Thank You!

Gadget for $\Delta \geq 4$

Appendix

Gadget for $\Delta \geq 4$

Gadget for Trails with $\Delta \geq 4$

Reduction from Setcover

Figure: red dashed line = $(\ell + 2)$ -chain; blue dotted line = $(\ell + 1)$ -chain.

Marco Morik TU Berlin

The Complexity of Routing with Few Collisions

11.09.2017 15 / 15