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Introduction RCA

Problem Definition

Fast Routing with Collision Avoidance (FRCA)

Input: A graph G = (V ,E ), source and sink s, t ∈ V ,
number of paths p, number of time-shared edges k , length `.

Question: Are there p s-t-routes of length at most ` in G that time-share
at most k edges?
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number of paths p, number of time-shared edges k , length `.
Question: Are there p s-t-routes of length at most ` in G that time-share
at most k edges?

An edge e is time-shared, if there are at least 2 s-t-routes in the solution
of FRCA P1 = (v1, . . . , va),P2 = (u1, . . . , ua) :
∃i : e = {vi , vi+1} = {ui , ui+1}
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Introduction Related Work

Related Work

1 Miniumum Shared Edges

NP-complete on directed graphs [Omran et al.: JoCO, 2013]
NP-complete on undirected graphs
W[2]-hard with respect to k
FPT with respect to p [Fluschnik et al.: FSTTCS, 2015]

2 Edge-disjoint paths in temporal graphs [Kempe et al.: JoCaSS, 2002]

3 Dynamic flow [Ford and Fulkerson: PUP, 1962]
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Overview

Undirected, with k Directed, with k DAGs, with k
const. unbound const. unbound const. unbound
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Computational Complexity Path-RCA

Planar Hamiltonian Cycle

Planar Hamiltonian Cycle (PHC)

Given: An undirected, planar, and cubic graph G = (V ,E ).
Question: Is there a cycle in G visiting each vertex in V exactly once?

NP-complete [Garey et al.: SICOMP, 1976]
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Computational Complexity Path-RCA

Reduction from PHC to Path-RCA with k = 0
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Computational Complexity Path-RCA

Construct 3 s-t Paths
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Computational Complexity Path-RCA

Reduction from PHC to Path-RCA with k = 0
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Computational Complexity Trail-RCA

Gadget for Trails

G ′
H
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v

u tx

...

n − 1

# of paths p = 2n

# of shared edges k = 0
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DAGs

Polynomial Results on DAGs

Undirected, with k Directed, with k DAGs, with k
const. unbound const. unbound const. unbound
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DAGs

(F)RCA on Directed Acyclic Graphs for const. k

In acyclic graphs, no vertex can appear twice in an s-t-route

=⇒ Walk = Trail = Path

In directed graphs, arcs can only be shared in one direction
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DAGs

(F)RCA on Directed Acyclic Graphs for const. k
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(F)RCA on Directed Acyclic Graphs for const. k
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Conclusion Results

Results
Undirected, with k Directed, with k DAGs, with k
const. unbound const. unbound const. unbound
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Conclusion Future Work

Challenges for Future Research
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Appendix
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Appendix

Gadget for Trails with ∆ ≥ 4
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Appendix

Reduction from Setcover
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Figure: red dashed line = (`+ 2)-chain; blue dotted line = (`+ 1)-chain.
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