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word transducers 



Transductions

transform objects -  here: words

transduction: mapping (or relation) from words to words

erase vowels

mirror

duplicate

permute circularly

mtmrphssmetamorphosis

metamorphosis

metamorphosis sisohpromatem

metamorphosis metamorphosismetamorphosis

phosismetamor



Transductions: some history

Early notion in formal language theory, motivated by coding theory, 
compilation, linguistics,…:


Moore 1956 “Gedankenexperimente on sequential machines”


Schützenberger 1961, Ginsburg-Rose 1966, Nivat 1968, Aho-
Hopcroft-Ullman 1969, Engelfriet 1972, Eilenberg 1976, Choffrut 
1977, Berstel 1979.

Extended later to more general objects, in particular to graphs.  
Logical transductions are crucial (Courcelle 1994).



Transducers

1DFT, 1NFT:  one-way (non-)deterministic finite-state transducers

2DFT, 2NFT: two-way (non-)deterministic finite-state transducers

erase vowels

mirror

duplicate

mtmrphssmetamorphosis

metamorphosis sisohpromatem

metamorphosis metamorphosismetamorphosis

Transduction:  binary relation over words


Above: functions



2.2.2 Separating examples

Given a 2NFT there are two natural questions to ask: is it possible to com-
pute the same function with a transducer that would be one-way, or one that
would be deterministic ? There is also natural intermediate questions: func-
tionality and disambiguation for the deterministic part; sweepingness for the
one-wayness aspect. We show here that most of these classes are separated.

One-wayness
We first show that the definitions of sweeping and one-way transducers

are relevant in the sense that they describe di↵erent classes of relations than
two-way transducers. Note that the transductions considered are functions.

Example 12. Let g be the mirror transduction, that is the function on ta, bu˚

such that for any w “ a1 ¨ ¨ ¨ a
n

P ta, bu˚ we have hpwq “ w “ a

n

¨ ¨ ¨ a1 . One
can refer to Figure 2.5 for a sweeping transducer computing this function.
Unlike the sweeping transducer, a one-way transducer would have to store
the entire input to be able to produce the correct letters after it has seen the
first output a

n

, that is at the end of the word (remember it can not go back).
Indeed, assume that there is a 1NFT T computing h and let w

i

“ a

i

b

i be
an input word for any i P N. Let ⇢

i

“ ⇢

p1q
i

⌧

i

⇢

p2q
i

be an accepting run of T on
w

i

such that ⌧
i

is the first transition reading b. As the number of transitions
is finite, there exist i † j such that ⌧

i

“ ⌧

j

“ ⌧ . This implies that ⇢p1q
i

⌧⇢

p2q
j

is

a valid run of T on the input aibj. Thus, the output of ⇢p1q
i

is a prefix of biai

and of bjai, that is b

k for some k § i. As ⇢

p1q
i

⌧⇢

p2q
j

is an accepting run of T
the output of ⌧⇢p2q

j

is bj´k

a

i. Since j ´ k ° 0 this word is not a su�x of bjaj

which is in contradiction with the fact that ⇢
j

“ ⇢

p1q
j

⌧⇢

p2q
j

is a run producing
the output bjaj.
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Figure 2.5: A transducer G computing the mirror transduction g

This mirror transduction is the first example that comes to mind when it
comes to exploiting the right-to-left passes. Note that it is an example of a
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2DFT (= deterministic, 2-way) computing the mirror
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Logic

MSOT: monadic second-order transductions [Courcelle, Engelfriet]

maps structures into structures

❖ fixed number of copies of input positions


❖ domain formula: unary MSO formula “c-th copy of input 
position belongs to the output and is labeled by a”


❖ order formula: binary MSO formula “c-th copy of 
position x precedes the d-th copy of position y in the 
output”



Logic

MSOT: monadic second-order transductions [Courcelle, Engelfriet]

Ex: mirror

[Engelfriet-Hoogeboom 2001]:     MSOT = 2DFT

❖ domain formula: 

❖ order formula:

doma(x) ⌘ a(x)

Before(x, y) = (x > y)



Streaming transducers SST = MSOT

SST: streaming string transducers [Alur-Cerny 2010]

❖ one-way automata  + 
❖ finite number of (copyless) registers:   output can 

be appended left or right, registers can be 
concatenated

mirror metamorphosis sisohpromatem



Relational transductions

 
 
 
 
 
 
 
              

 
 

1DFT 2DFT = DSST = MSOT

1NFT 2NFT

NSST = NMSOT

w ↦ Σ|w| w ↦ w*

u v ↦ v u

w ↦ w w

decidable equivalence
undecidable equivalence

a w ↦ w  a



Equivalence problem
A transducer is functional (single-valued) if every input has at 
most one output.

❖ [Griffiths’68]: Equivalence of 1NFT is undecidable.

❖ [Gurari’82]: Equivalence of 2DFT (DSST [Alur-Cerny]) is PSPACE-c.

❖ [Gurari-Ibarra’83]: Equivalence of functional 1NFT is in PTime. 

❖ [Alur-Deshmukh’11] Equivalence of functional NSST is PSPACE-c. 

❖ [Culik-Karhumäki’87] Equivalence of functional 2NFT is decidable. 

(PSPACE-c, because of equivalence of 2NFA is in PSPACE, Vardi’89)



Word

functions



Functionality

A transducer is functional if every input has at most one output.

Checking functionality

1NFT: [Schützenberger’75, Gurari-Ibarra’83]    PTime

2NFT: [Culik-Karhumäki’87] decidable

NSST: [Alur-Deshmukh’11]  PSPACE-c

(actually PSPACE-c)



Functional transductions

 
 
 
 
 

 
 

1DFT DSST = 2DFT = MSOT

1NFT                           2NFT = NMSOT=
=

w ↦ w wa w ↦ w  a

w  a ↦ a w

NSST
[Choffrut’77]

PTime

[Filiot et al.’13]

non-elementary

[LICS’17]2-ExpSpace

[Monmege et al’16]
3-ExpSpace

subsequential

rational

regular



Translations and recent results 

• From DSST to 2DFT:    PTime  


(based on new results [Dartois, Fournier, Jecker, Lhote 2017])

❖ decompose DSST as 2DFT o 1DFT (poly-size)

❖ 1DFT can be made reversible with quadratic blow-up 

❖ composition with reversible 1DFT in PTime

• From functional 2NFT to (reversible) 2DFT:     ExpTime    [DFJL’17]

• From 2DFT to DSST:        ExpTime



Recent results [Dartois, Fournier, Jecker, Lhote 2017]

❖ composition of reversible 2DFT in PTime (easy)    

Tla

input input + look-ahead
Ttr input + look-ahead 

+ acc. run of T
R

output

Tla

Ttr

 exp-size, co-deterministic “look-ahead” 1NFT   


 exp-size 1DFT        outputs acc. run 


 reversible 2DFT R  does the output

❖ any 2DFT  T  can be made reversible with exponential blow-up: 

make reversible



I. Streaming



Streaming
❖ Wealth of research on external memory algorithms 


 [Mutukrishnan, Henzinger, Aggarwal, Grohe, Magniez]

❖  Large input in external memory

❖ Random access is more expensive than streaming (= one 

pass)

❖ Few sequential passes acceptable

Streaming string transducers have efficient processing, 
but still need memory for registers and updates…

… 1DFT and 1NFT are more attractive



Functional transductions

 
 
 
 
 

 
 

1DFT DSST = 2DFT = MSOT

1NFT                           2NFT = NMSOT=
=

w ↦ w wa w ↦ w  a

w  a ↦ a w

NSST

[Filiot et al.’13]

non-elementary

[LICS’17]2-ExpSpace



2NFT to 1NFT: example

Fix a regular language R.


       F(w) = ww      if w in R 2DFT

F can be implemented by some 1NFT iff  there is some B 
such that every word of R has period B.

Example:   R = (ab)*          1DFT  outputs “abab” for each “ab”



F(w) = ww      if w in R 

F can be implemented by some 1NFT iff  for 
some bounded integer B:  every word in R has 
period B.

x2 x3 x0 x1

L2 L1

`1

`2

Figure 1: An example of an inversion (L1, `1, L2, `2) of a two-way run.

L2 L1

`1

`2

Figure 2: An example of an inversion of a two-way run.
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a   b   a    b    a    b    a    b    a    b    a   b   a   b   a   b    

a   b   a    b    a    b    a    b    a    b    a   b   a   b   a   b    

input

looploop

inversion



Given a functional 2NFT T:

❖ it is decidable in 2-ExpSpace whether an equivalent 1NFT exists

❖ if “yes”: construction of 3-exp size equivalent 1NFT 

❖ if T is sweeping: one exponential less

Lower bounds


❖ PSPACE for the decision procedure

❖ 2EXP for the size of the output (1NFT)

Remark: The problem is undecidable without functionality [FSTTCS’15]

The result (LICS’17):



Open problems

❖ PSPACE lower bound for decision procedure “2NFT to 

1NFT”  - better lower bound?

❖ Better upper bound?

❖ Better complexity for “2NFT to 1DFT”?   

❖ Extension from  functional 2NFT to k-valued 2NFT?



II. Minimizing

passes



Sweeping transducers

❖ less expressive than 2NFT:

example: reversing a list
u1#u2# · · ·un �! un# · · ·u2#u1

❖ Sweeping: left-to-right, right-to-left passes



From 2NFT to Sweeping 

❖ Given functional 2NFT T and integer k. It is decidable 
in 2ExpSPACE (poly space in k) if T is equivalent to 
some k-pass sweeping transducer.

❖ Given functional 2NFT T. If T is equivalent to some k-pass 
sweeping transducer, then we can assume that k is 
exponentially bounded.

❖ Given functional 2NFT T. It is decidable in 2ExpSPACE 
if T is equivalent to some sweeping transducer.

                                                                            [LICS’17]



Sweeping transducers vs. SST

❖ Given a functional sweeping transducer T. Let k be 
minimal such that T is equivalent to some k-pass 
sweeping transducer. Then k can be computed in 
ExpSPACE.                                               

❖ Tight connection between sweeping transducers and 
concatenation-free SSTs:


            2k passes   =  k registers

❖ Given a functional, concatenation-free SST T. Let k be minimal 
such that T is equivalent to some k-register concatenation-free 
SST. Then k can be computed in 2-ExpSPACE.  

[ICALP’16]



Open questions

❖ Compute minimal number of registers for deterministic SST

❖ Decomposition theorem for k-valued SST? 

❖ Decidability of equivalence for k-valued SST?


    


    [Weber’96, Sakarovitch, de Souza’08] 


    Every k-valued 1NFT can be decomposed into k functional 1NFTs.


    [Culik, Karhumäki’86] 


    Equivalence of k-valued 2NFT is decidable.



III. Algebra



Algebra

Long line of research on algebra for regular languages:  
❖ algebra offers machine-independent characterizations, 

canonical objects, minimization, decision procedures 
for subclasses

❖ prominent example: decide whether a regular language 
is star-free 

[Schützenberger’65] star-free = aperiodicity
[McNaughton, Papert’71] star-free = first-order logic



Algebra for transducers?

❖ A Myhill-Nerode theorem for 1DFT…             [Choffrut’79]


   … thus a canonical (minimal) 1DFT

❖ 1NFT 


Any 1NFT is equivalent to the composition               of a 1DFT D 
with a co-deterministic 1NFT R.                         [Elgot, Mezei’65] 

D �R

Bimachine:          DFA L + co-deterministic NFA R + 
output function out(letter, L-state, R-state)      

[Reutenauer, Schützenberger’91]

For every 2NFT there is a canonical bimachine.



Recent results
❖ 1NFT:  equivalent to order-preserving MSOT

Given a 1NFT it is decidable whether it is equivalent to an 
order-preserving FOT (first-order transduction).

                                                          [Filiot,Gauwin,Lhote’16]


       proof uses canonical bimachines

❖ 2NFT = MSOT:    no decision procedure for FOT so far, 
but …

A 2NFT is equivalent to some FOT iff it is equivalent to 
some aperiodic 2NFT iff it is equivalent to some aperiodic 
SST.

[Carton, Dartois’15], [Filiot, Krishna, Trivedi’15]



Conclusions
❖ This talk presented a selection of current work on word 

transducers.

❖ Goal of current work: develop a robust theory of word 

transducers and identify genuine algorithmic questions.


    


    Beyond words…


❖ Transducers with origin [Bojanczyk’14]: record where the 
information comes from.


    Less combinatorics involved, Myhill-Nerode theorem.

❖ Tree transducers: yet another story…



Thank you!


