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Spam Detection III

[Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient Semi-Streaming Algorithms

for Local Triangle Counting in Massive Graphs. ACM SIGKDD, 2008]
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Further Applications

Motif detection (computational biology)
[Yook, Oltvai, Barabasi: Proteomics, 2004]

Identifying roles in online discussion forums
[Wesler et al.: Journal of Social Structure, 2007]

Social network analysis
[Berry et al.: Physical Review E, 2011]

Predicting the evolution of social networks
[Leskovec et al.: ACM SIGKDD, 2008]
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Problem Definition

Problem (Triangle Enumeration)

Input: An undirected unweighted graph G = (V ,E ).
Task: List all triangles in G .

{
{•,•,•}, {•,•,•},
{•,•,•}, {•,•,•}

}
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Related Work

1 Triangle Detection and Triangle Counting in
non-standard computation models:

Streaming Model
[Becchetti et al.: ACM SIGKDD, 2008]

Quantum Computing
[Lee, Magniez, Santha: Algorithmica, 2017]

MapReduce
[Park et al.: CIKM, 2014]

2 Best algorithms: O(n3) and O(m1.5)

3 FPT in P (e. g. O(n3) vs. O(k2 · n2))
[Giannopoulou, Mertzios, Niedermeier: TCS, 2015]

Parameterized by degeneracy d in O(m · d) time.
[Chiba and Nishizeki: SIAM Journal on Computing, 1985]

Parameterized by vertex cover K and the maximum degree ∆K

in K in O(K ·∆2
k) time.

[Green and Bader: IEEE Social Computing, 2013]
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Our Results
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Kernels (for Decision Problems)

(I , k) (I ′, k ′)

∈ L ⇐⇒ L 3
polynomial time

≤ g(k)

problem kernelinput instance

Definition (kernel)

A reduction to a problem kernel is a mapping of instances (I , k)
to instances (I ′, k ′) such that

|I ′|+ k ′ ≤ g(k),

(I , k) ∈ L⇔ (I ′, k ′) ∈ L, and

it can be computed in polynomial time.
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Enum-Kernels (for Enumeration Tasks)
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(I , k) (I ′, k ′)

≤ g(k)

∈ L ⇐⇒ L 3
polynomial time

Sol(I ′, k ′)

R

Sol(I , k)

Tf

(I , k) input
(I ′, k ′) kernel

R kernelization
Sol (all) solutions

f lift function
Tf algorithm for f
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Sol (all) solutions
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[Creignou et al.: Theory of Computing Systems, 2017]
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Definition (enum-advice kernel)

A reduction to an enum-advice kernel is a mapping of
instances (I , k) to instances (I ′, k ′,A) such that

|I ′|, k ≤ g(k),

every solution is listed exactly once, and

R and Tf can be computed fast enough.
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Distance to d-Degenerate Graphs

Definition (degeneracy)

A graph has degeneracy d if every subgraph has a vertex of degree
at most d .

Definition (distance to d-degenerate graphs)

The distance to d-degenerate graphs is the least number of
vertices that have to deleted from a graph in order to reduce its
degeneracy to at most d .
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Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 12 / 18
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Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••

Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••

Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••

Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••

Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••

Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••

Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••
Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ←

••

• ←

••

• ←

••
Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ← ••• ← ••• ← ••
Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Introduction Kernelization Computational Hardness Conclusion

Enum-Advice Kernel for almost d-Degenerate Graphs

Compute the set T ′ of triangles with
at most one vertex in D.

Delete all edges which have no
endpoint in D.

Compute all twins (vertices with
exactly the same neighbors).

Delete all but one twin.

Set parameter k ′ = k and
advice A = (T ′,M).

D

T ′ =
{
{•••}}

M : • ← ••• ← ••• ← ••
Matthias Bentert, TU Berlin Parameterized Aspects of Triangle Enumeration 13 / 18



Computational Hardness



Introduction Kernelization Computational Hardness Conclusion

Hardness in P?

Can all parameters be used to design f (k) · (n + m) time
algorithms?

How can we prove that certain parameters are unsuited?

Use reductions!
( Triangle Detection)
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General-Problem-Hardness

I (I ′, k ′)

g(|I |) ∈ O(

f (|I |)

)

yes / no

k ≤ c

|I ′| ∈ O(|I |)

no

O(f (|I ′|) · g(k ′))

?

no O(f (|I |))

Definition (General-Problem-hardness)

We call a problem L c-General-Problem-hard(f ) if there exists
an algorithm A transforming any input instance I of L into a new
instance (I ′, k ′) of a parameterized version of L such that

A runs in f (|I |) time,

k ′ ≤ c , and

I ∈ L⇔ I ′ ∈ L,

|I ′| ∈ O(|I |).
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chromatic number

Definition (domination number)

The domination number of a graph is the cardinality of a smallest
set D of vertices such that N[v ] ∩ D 6= ∅ for each vertex v .
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The clique-width of a graph G is the minimum number k such
that G can be constructed using a k-expression.

A k-expression consists of four operations which use k labels:

Creating a new vertex with some label i .

Disjoint union of two labeled graphs.

Edge insertion between every vertex with label i and every
vertex with label j .

Renaming of label i to j .
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Clique-Width II

Theorem

Triangle Enumeration is solvable in O(n2 + n · k2 + #T)
time, given a k-expression of the input graph.



Clique-Width II

Given a k-expression tree B of G one can compute every node u
in B the partition of Vu into its at most k twin-classes where Vu is
the set of vertices corresponding to the leaves of the subtree of B
rooted at u. [Bui-Xuan et al.: European Journal of Combinatorics, 2013]

Definition (twin-class)

A twin-class in Vu is a set V ′ ⊆ Vu of vertices such that every
vertex in V \ Vu either has all vertices in V ′ as its neighbors or
none of them.
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Clique-Width II

Properties of the tree of twin-classes (module decomposition):

Each node has no or exactly two children.

Each twin-class is fully contained in one of the twin-classes of
the parent node.

The root node has only a single twin-class containing all
vertices (of G ).
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Clique-Width III

u, v ,w : nodes (where u,w are the children of v (if they exist))
i , j , l : twin-classes of v
vi , vj , vl : arbitrary vertices in the twin-classes i , j , l , respectively
Mx

h : set of all twin-classes of x that are subsets of h
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Dynamic program:
E v
i ,j : all edges between vertices in i and j

T v
i ,j ,l : all triangles containing vertices in i , j and l

A leave node has no edges and no triangles.
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Clique-Width III

Each edge and triangle is computed exactly once.

First step by Bui-Xuan et al. takes O(n2) time.

Dynamic program takes O(m + #T +n · k2) time.



Distance to d-Degenerate Graphs and Maximum Degree

Theorem

Triangle Enumeration parameterized by distance
to d-degenerate graphs and maximum degree ∆D in a set D such
that G − D is d-degenerate is solvable in O(|D| ·∆2

D + n · d2)
time provided that the set D is given.



Distance to d-Degenerate Graphs and Maximum Degree

1 List all triangles which do not contain any vertices in D. To
this end, compute the d-degenerate graph G ′ = G − D and
list all triangles contained in G ′ in O(n · d2) time using the
degeneracy order of G ′.

2 List all triangles with at least one vertex contained in D. For
each u ∈ D, iterate over all of the at most ∆2

D possible pairs
of neighbors v ,w ∈ N(u). For each pair v ,w ∈ N(u), check
in constant time whether {u, v ,w} is a new triangle.
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General Lemma for Distance to Π

Lemma

Triangle Enumeration parametrized by deletion set K to Π is
solvable in O(m · |K |+ n + x) time if Triangle Enumeration
on a graph in Π is solvable in O(x) time.



General Lemma for Distance to Π

Let K be a set of vertices such that G ′ = G − K is a graph in Π.
By assumption, all triangles within G ′ can be listed in O(x) time.

All triangles with at least one vertex in K can be listed
in O(m · |K |+ n) time by the following algorithm.

Read the whole input and fix an arbitrary order ≤a of the
vertices in K .

Check for each edge {u,w} and each vertex v ∈ K
whether {u, v ,w} is a triangle and for all x ∈ {u,w} ∩ K it
holds that v ≤a x . If both conditions hold, then list {u, v ,w}
as a new triangle.

Since v ∈ K holds, this algorithm does not list any triangles which
do not contain vertices in K and it lists all triangles with at least
one vertex in K exactly once.
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Distance to Cographs

Theorem

Triangle Enumeration parametrized by deletion set K to
cographs is solvable in O(#T +n + m · |K |) time.



Distance to Cographs

Each cograph has a binary cotree representation that can be
computed in linear time.

A cotree is a tree with V as a set of leaves and inner vertices that
are either labeled with union or join.
A union of two graphs is disjoint and a join of two graphs is the
same vertices and edges plus all edges between the two sets of
vertices.
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Each cograph has a binary cotree representation that can be
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A cotree is a tree with V as a set of leaves and inner vertices that
are either labeled with union or join.
A union of two graphs is disjoint and a join of two graphs is the
same vertices and edges plus all edges between the two sets of
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Distance to Cographs

Dynamic program that stores for each node in the cotree all
vertices V (p), all edges E (p) and all triangles T (p) in the
corresponding subgraph of G .

Let q1, q2 be the children of an inner node p in the cotree.

A single leaf node has one vertex and no edges or triangles.
A union node has vertices V (q1) ∪ V (q2), edges
E (q1) ∪ E (q2) and
triangles T (q1) ∪ T (q2).
A join node has

V (p) = V (q1) ∪ V (q2),

E (p) = E (q1) ∪ E (q2) ∪ {{x , y} | x ∈ V (q1) ∧ y ∈ V (q2)} and

T (p) = T (q1) ∪ T (q2) ∪ {{x , y , z} | x ∈ V (q1) ∧ {y , z} ∈ E (q2)}∪
{{x , y , z} | x ∈ V (q2) ∧ {y , z} ∈ E (q1)}.
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Distance to Cographs

There are n leaf-nodes in the cotree each of which require a
constant amount of time to compute.

There are at most n − 1 union nodes each of which only
require a constant amount of time as they only need to point
on their children’s values.

There are at most n − 1 join nodes. Each edge and triangle is
only added once and all other values do not need to be
recomputed.

The global running time of this algorithm is in O(#T +n + m).
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There are n leaf-nodes in the cotree each of which require a
constant amount of time to compute.

There are at most n − 1 union nodes each of which only
require a constant amount of time as they only need to point
on their children’s values.

There are at most n − 1 join nodes. Each edge and triangle is
only added once and all other values do not need to be
recomputed.

The global running time of this algorithm is in O(#T +n + m).



Enum-Advice Kernelization =⇒ Solving Algorithm

Lemma

Let R be an enum-advice kernelization of a parameterized
enumeration problem P such that for every instance (x , k) of P:

R runs in O((|x |+ k)c) time for some constant c ;

the unparameterized version of P can be solved in g(|x |) time;

the kernelization computes the pair (I ,A) where |I | ≤ h(k),
and Tf takes O(|I |d) time between generating two solutions
for some constant d ;

#s denotes the number of solutions in I and #S denotes the
number of solutions in x .

Then, P can be solved
in O((|x |+ k)c + g(h(k)) + (#s + #S) · h(k)d) time.



Enum-Advice Kernelization =⇒ Solving Algorithm

1 Compute the kernel (I ,A) in O((|x |+ k)c) time.

2 Find all solutions in I in g(|I |) ∈ O(f (h(k))) time.

3 Compute all solutions of I in O(g(|I |) ⊆ O(g(h(k))) time.

4 Apply Tf on all solutions of I .
This takes O((#s + #S) · |I |d) ⊆ O((#s + #S) · h(k)d) time.

This algorithm takes O((|x |+ k)c + g(h(k)) + (#s + #S) · h(k)d)
time and lists all triangles in x .
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Feedback Edge Number I

Lemma

Let G = (V ,E ) be an undirected graph and let F be a feedback
edge set in G . All triangles {u, v ,w} where at least one of the
edges between the three vertices is not in F can be enumerated
in O(n + m) time. There are at most 2|F | such triangles.



Feedback Edge Number I

Every triangle {u, v ,w} in G where at least one of the edges
between the three vertices is not in F is of the
form {u, v , p(v)} for some vertices u, v .

Check for each edge {u, v} ∈ F
whether p(u) = p(v), {p(u), v} ∈ E or {u, p(v)} ∈ E :

In the first case we list {u, v , p(u)} as a triangle and do not
consider the other cases.
If p(u) 6= p(v) and {p(u), v} ∈ E , then we list {u, v , p(u)} as
a triangle.
If p(u) 6= p(v) and {u, p(v)} ∈ E , then we list {u, v , p(v)} as
a triangle.

Note that for every edge in F we list at most two triangles.
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Feedback Edge Number II

Theorem

Triangle Enumeration parameterized by feedback edge
number k admits a constant-delay enum-advice kernel with at
most 2k + 3 vertices and k + 3 edges which can be computed
in O(n + m) time.



Feedback Edge Number II

For every edge e ∈ F put e and both of its endpoints into the
kernel graph. Compute the feedback edge number k ′ ≤ k .

Compute all triangles in G with at least one edge in E \ F and
set A to be the set of all triangles found.
If A 6= ∅, then add one extra triangle {x , y , z} where x , y , z /∈ V .

f (w ,A) =

{
A if w = {x , y , z},
{w} else.
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Feedback Edge Number II

Each step can be done in O(n + m) time.

It holds that |GI | ≤ 3 · k + 3.

Each triangle T either contains at least one edge in E \ F or
only edges in F . In the first case GI contains the
triangle {x , y , z} and in the second case GI contains T .

For two solutions p, q in I that are not {x , y , z}, if p 6= q,
then f (p,A) ∩ f (q,A) = {p} ∩ {q} = ∅.
By construction, f ({x , y , z},A) contains all triangles in G
where at least one of the edges is not in F . Since all edges
in F are included in GI , all other triangles are contained in GI .
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triangle {x , y , z} and in the second case GI contains T .

For two solutions p, q in I that are not {x , y , z}, if p 6= q,
then f (p,A) ∩ f (q,A) = {p} ∩ {q} = ∅.
By construction, f ({x , y , z},A) contains all triangles in G
where at least one of the edges is not in F . Since all edges
in F are included in GI , all other triangles are contained in GI .
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