Busy Beaver Scores and
Alphabet Size

Holger Petersen
FCT 2017, Bordeaux

Reminder: Busy Beaver Game (1)

Defined by T. Rado in 1962

Based on deterministic single-tape Turing machines
with binary alphabet, steps characterized by:

1. Current state

2.Symbol scanned

3. Symbol written

4. Head movement (mandatory)

5. New state (including halt-state “for free”)

“‘quintuple Turing machine variant”

Reminder: Busy Beaver Game (2)

Start TM on all-blank (0‘s) tape, if it stops:
« Number of steps is activity
« Number of ones is productivity

Functions defined by Rado:
« S(n) = maximum activity of any n-state TM
¢ X(n) = maximum productivity of any n-state TM

Rado showed that S(n) and 2(n) grow faster than
any computable function

—

S(n) and X(n) are not computable (or recursive)

Reminder: Busy Beaver Game (3)

Generalization to alphabets with m > 2 symbols:
« S(n,m) = max. activity of n-state, m-symbol TM
« X(n,m) = max. productivity n-state, m-symbol TM

Productivity: number of non-blanks

Trivial observation:
S(n,m) > S(n,2) and X(n,m) = 2(n, 2)

—

S(n,m) and X(n,m) are not computable

Goal of the game: Find machines of maximum
activity/productivity (Busy Beavers)

Motivation

On a simple source for non-computable functions
(Rado‘s contribution to: Symposium on
Mathematical Theory of Automata, April 1962)

Metamathematical interest:

Knowing X(n) or S(n) for sufficiently large n would
settle Goldbach’s conjecture and other conjectures
disproved by counterexamples (Chaitin 1987)

Concrete value of n (Yedidia and Aaronson 2016):
n = 4888 suffices for Goldbach’s conjecture

Improved to 47 and then 31 in Aaronson’s blog

Warm-Up: 1-State Busy Beaver

Let's compute Z(1):

0 <symbol written><head movement>

.

Warm-Up: 1-State Busy Beaver

Let's compute Z(1):

loop, machine
never stops

0 <symbol written><head movement>

.

Warm-Up: 1-State Busy Beaver

Let's compute Z(1):

4" 01<head movement> '@

.

Warm-Up: 1-State Busy Beaver

Let's compute Z(1):

4" 01<head movement> '@

=>2(1)=1

.

Chasing Busy Beavers for Two Symbols

" Results | Authors | Year

¥(2,2) =4 T. Rado 1962
%(3,2) =6 R. Hegelman 1962
%(3,2) =6,5(3,2) =21 S. Lin, T. Rado 1965
¥(4,2) > 13,5(4,2) = A. H. Brady 1964
107

>(4,2) =13,5(4,2) = A.H. Brady 1974
107 1983

R. J. Kopp 1981

Chasing the Busy Beaver (5, 2)

Early Results:

reported by M. W. 1964 17 ones

Green

D.S. Lynn 1972 22 ones
435 steps

B. Weimann 1973 40 ones

D.S. Lynn 1974 112 ones
/7,707 steps

.

Chasing the Busy Beaver (5, 2)

Results after competition initiated at 6th Gl-
Conference on TCS, Dortmund:

U. Schult (winner out 1983 501 ones

of 133 submissions) 134,467 steps
G. Uhing 1985 1,915 ones

2,358,063 steps
H. Marxen, 1989 4,098 ones

J. Buntrock 47,176,870 steps

Monotonicity

Adding a state increases scores:

. - 6

.

Monotonicity

Adding a state increases scores:

i 8 : '@

yyR (y # 0)

.

Monotonicity

Adding a state increases scores:

i 8 : '@

yyR (y # 0)

=>X(n+1,m)>2(nm)),

. S(n+1,m) > S(n,m)

Conjecture (Harland 2016)

Let M be a k-halting* Turing machine with

n states and m symbols for some k > 1 with finite
activity.

Then there is a k-halting n-state (m + 1)-symbol
Turing machine M’ with finite activity such that:

activity(M') > activity(M)
productivity(M’) > productivity(M)

* k transitions to the halt state

Evidence Supporting Harland's
Conjecture

$(2,2) =4 < 2(2,3) =9 < 2,050 < 2(2,4)
S$(2,2) = 6 < S(2,3) =38 < 3,932 < S(2,4)

%(3,2) =6 <374,676,383 < 2(3,3)
S(3,2) =21<119,112,334,170,342,540 < S(3,3)

Evidence Supporting Harland's
Conjecture

$(2,2) =4 < 2(2,3) =9 < 2,050 < 2(2,4)
S$(2,2) = 6 < S(2,3) =38 < 3,932 < S(2,4)

%(3,2) =6 <374,676,383 < 2(3,3)

S(3,2) =21< 1%9,112,334,170,342,540 < S(3,3)

one hundred nineteen quadrillion...

Results of Rado, Lin, Lafitte, Papazian,
T. Ligocki and S. LigocKki

Theorem 1

For every m > 2and k > 1thereis an N, , such
that for every k —halting Turing machine M with
n >N, , states and m symbols with finite
activity there is an n-state, (m + 1) -symbol
k —halting Turing machine M’ with finite activity
such that
activity(M') > activity(M)
productivity(M’') > productivity(M).

Visual Proof of Theorem 1

m symbols

A

(

_

o

n states —

p—

Visual Proof of Theorem 1

m symbols

A

(

_

o

n states —

- additional state
increases scores

Visual Proof of Theorem 1

m symboISA additional symbol

(\ keeps area constant

o

area corresponds to
descritional complexity of TM

n states —

Visual Proof of Theorem 1

m symbolsA additional symbol
i keeps area constant

—

area corresponds to
descritional complexity of TM

n states —

Extractor / simulator
treating the blue area
as a ROM

Introspective Computing (Ben-
Amram, Petersen 2002)

T1TR
OOR

OOR OOR

TTR T1TR

State f reached after reading:

« 1000000 - bits 110 encoded
« 0100 > bits 010

« 0010000000 - bits 111

Transition encodes log. number of bits

.

Theorem 2

For every Turing machine M with n > 2 states
and two symbols having finite activity there is
an n -state, 3-symbol Turing machine M with

finite activity such that

activity(M') > activity(M).

Proof of Theorem 2

Add halting transitions on new symbol ,2°

.

Proof of Theorem 2 (cont.)

Consider halting transition:

Modify transition depending on X, Z

Proof of Theorem 2 (cont.)

X = 0, w.l.o.g. initial state 1T moves right on O:

0 Y V4

2
2

Proof of Theorem 2 (cont.)

X =1, some state R moves right on 1:

1 Y V4

Proof of Theorem 2 (cont.)

X=1,7Z =1, all states move left on 1:

1 Y

sﬁs

Proof of Theorem 2 (cont.)

X=1,Z7Z =0, some state L moves left on O:

1 Y

oHo

2
2

sﬁs

Proof of Theorem 2 (cont.)

If all states move right on 0, then activity is
bounded by n.

For all n > 2 we have S(n,2) > n
- Take n-state Busy Beaver for 2 symbols

Theorem 3

For every Turing machine M with n > 2 states
and m = 2 symbols having finite activity there
is a 2-state, (4nm + 5m)-symbol Turing

machine M’ with finite activity such that

activity(M') > activity(M)
productivity(M’) > productivity(M).

Proof of Theorem 3

By monotonicity in number of states,
M with n + 1 states and m symbols
increases activity and productivity.

Classical construction of Shannon
transforms it into equivalent 2-state
machine with

Aimn + 1)+ m =4nm + 5m
symbols.

Theorem 4

For every Turing machine M with n > 2 states
and m = 3 symbols having finite activity there
is an n —-state, 3m -symbol Turing machine
M’ with finite activity such that

activity(M') > activity(M).

Proof of Theorem 4 by Example

Idea: Let head bounce on additional symbols
with subscripts L, R

Proof of Theorem 4 (cont.)

Thank you for your attention!

Attribution: By Steve from washington, dc, usa (American Beaver) [CC BY-SA 2.0
(http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

Digression: In Praise of Beaverness

COMPUTING THE BUSY BEAVER FUNCTION
(Chaitin 1987):

...to information theorists it is clear that the
correct measure is bits, not states. ..

...to deal with 2(number of bits) one would
need a model of a binary computer as simple
and compelling as the Turing machine model,
and no obvious natural choice is at hand.”

In Praise of Beaverness

» Reasonable programming languages encode
n-state Turing machines (fixed m) in

O(nlogn) bits (not sure about Befunge and
Ook!)

» Turing machines encode nlogn bits of
programme code in 0(n) states by
Introspective computing

