
Holger Petersen

FCT 2017, Bordeaux



Based on deterministic single-tape Turing machines 
with binary alphabet, steps characterized by:

Defined by T. Rado in 1962

1. Current state
2. Symbol scanned
3. Symbol written
4. Head movement (mandatory)
5. New state (including halt-state “for free”)

“quintuple Turing machine variant”



Functions defined by Rado: 
• 𝑆 𝑛 =maximum activity of any 𝑛-state TM
• Σ 𝑛 =maximum productivity of any 𝑛-state TM

Start TM on all-blank (0‘s) tape, if it stops:
• Number of steps is activity
• Number of ones is productivity

Rado showed that 𝑆 𝑛 and Σ 𝑛 grow faster than
any computable function

𝑆 𝑛 and Σ 𝑛 are not computable (or recursive)



Generalization to alphabets with 𝑚 ≥ 2 symbols:
• 𝑆 𝑛,𝑚 =max. activity of 𝑛-state, 𝑚-symbol TM
• Σ 𝑛,𝑚 =max. productivity 𝑛-state, 𝑚-symbol TM

Trivial observation:
𝑆 𝑛,𝑚 ≥ 𝑆 𝑛, 2 and Σ 𝑛,𝑚 ≥ Σ 𝑛, 2

𝑆 𝑛,𝑚 and Σ 𝑛,𝑚 are not computable

Productivity: number of non-blanks

Goal of the game: Find machines of maximum
activity/productivity (Busy Beavers)



On a simple source for non-computable functions
(Rado‘s contribution to: Symposium on 
Mathematical Theory of Automata, April 1962)

Metamathematical interest:
Knowing Σ 𝑛 or 𝑆 𝑛 for sufficiently large 𝑛 would 
settle Goldbach’s conjecture and other conjectures 
disproved by counterexamples (Chaitin 1987)

Concrete value of 𝑛 (Yedidia and Aaronson 2016):
𝑛 = 4888 suffices for Goldbach’s conjecture

Improved to 47 and then 31 in Aaronson’s blog



Let‘s compute Σ 1 :

1

0 <symbol written><head movement>



Let‘s compute Σ 1 :

1

0 <symbol written><head movement>

loop, machine
never stops



Let‘s compute Σ 1 :

1 HALT

01<head movement>



Let‘s compute Σ 1 :

1 HALT

01<head movement>

⇒ Σ 1 = 1



Results Authors Year

Σ 2, 2 = 4 T. Rado 1962

Σ 3, 2 ≥ 6 R. Hegelman 1962

Σ 3, 2 = 6, 𝑆 3, 2 = 21 S. Lin, T. Rado 1965

Σ 4, 2 ≥ 13, 𝑆 4, 2 ≥
107

A. H. Brady 1964

Σ 4, 2 = 13, 𝑆 4, 2 =
107

A.H. Brady

R. J. Kopp

1974 
1983
1981



Early Results:

Author Year Scores

reported by M. W. 
Green

1964 17 ones

D.S. Lynn 1972 22 ones
435 steps

B. Weimann 1973 40 ones

D.S. Lynn 1974 112 ones
7,707 steps



Results after competition initiated at 6th GI-
Conference on TCS, Dortmund:

Author Year Scores

U. Schult (winner out 
of 133 submissions)

1983 501 ones
134,467 steps

G. Uhing 1985 1,915 ones
2,358,063 steps

H. Marxen, 
J. Buntrock

1989 4,098 ones 
47,176,870 steps



Adding a state increases scores:

HALT 

x1R



Adding a state increases scores:

HALT 

x1R

HALT

yyR (y ≠ 0)

01R

n+1



Adding a state increases scores:

⇒ Σ 𝑛 + 1,𝑚 > Σ 𝑛,𝑚 ,
S 𝑛 + 1,𝑚 > S 𝑛,𝑚

HALT 

x1R

HALT

yyR (y ≠ 0)

01R

n+1



Let 𝑀 be a 𝑘-halting* Turing machine with 

𝑛 states and 𝑚 symbols for some 𝑘 ≥ 1 with finite 
activity. 

Then there is a 𝑘-halting 𝑛-state (𝑚 + 1)-symbol 
Turing machine 𝑀′ with finite activity such that:

activity(𝑀′) > activity(𝑀)

productivity(𝑀′) > productivity(𝑀)

* 𝑘 transitions to the halt state



Σ 2, 2 = 4 < Σ 2, 3 = 9 < 2,050 < Σ 2, 4

S 2, 2 = 6 < S 2, 3 = 38 < 3,932 < S 2, 4

Σ 3, 2 = 6 < 374,676,383 ≤ Σ 3, 3

S 3, 2 = 21 < 119,112,334,170,342,540 ≤ S 3, 3



Σ 2, 2 = 4 < Σ 2, 3 = 9 < 2,050 < Σ 2, 4

S 2, 2 = 6 < S 2, 3 = 38 < 3,932 < S 2, 4

Σ 3, 2 = 6 < 374,676,383 ≤ Σ 3, 3

S 3, 2 = 21 < 119,112,334,170,342,540 ≤ S 3, 3

Results of Rado, Lin, Lafitte, Papazian, 
T. Ligocki and S. Ligocki

one hundred nineteen quadrillion…



For every 𝑚 ≥ 2 and 𝑘 ≥ 1 there is an 𝑁𝑚, 𝑘 such 
that for every 𝑘 -halting Turing machine 𝑀 with 
𝑛 ≥ 𝑁𝑚, 𝑘 states and 𝑚 symbols with finite 
activity there is an 𝑛-state, (𝑚 + 1) -symbol 
𝑘 -halting Turing machine 𝑀′ with finite activity 
such that 

activity(𝑀′ ) > activity(𝑀) 

productivity(𝑀′) > productivity(𝑀).



n states

m symbols



n states

additional state
increases scores

m symbols



n states

additional state
increases scores

m symbols additional symbol
keeps area constant

area corresponds to
descritional complexity of TM



n states

additional state
increases scores

m symbols additional symbol
keeps area constant

area corresponds to
descritional complexity of TM

Extractor / simulator
treating the blue area
as a ROM



00R 00R 00R 00R 00R
f

00R

11R

11R

State f reached after reading:
• 1000000  bits 110 encoded
• 0100  bits 010
• 0010000000  bits 111

Transition encodes log. number of bits

11R

00R



For every Turing machine 𝑀 with 𝑛 ≥ 2 states 
and two symbols having finite activity there is 
an 𝑛 -state, 3-symbol Turing machine 𝑀 with 
finite activity such that

activity(𝑀′ ) > activity(𝑀).



22R

HALT

22R 22R 22R

22R

Add halting transitions on new symbol „2“



X Y Z

Q

X W Z

H

Consider halting transition:

Modify transition depending on X, Z



0 Y Z

Q

0 2 Z

1

X = 0, w.l.o.g. initial state 1 moves right on 0:

0 2 Z

S

0 2 Z

H



1 Y Z

Q

1 2 Z

R

X = 1, some state R moves right on 1:

W 2 Z

H

W 2 Z

H

S



1 Y 1

Q

1 2 1

L

X = 1, Z = 1, all states move left on 1:

1 2 W

H

1 2 W

H

S



1 Y 0

Q

1 2 0

L

X = 1, Z = 0, some state L moves left on 0:

1 2 W

H

1 2 W

H

S



If all states move right on 0, then activity is
bounded by 𝑛.

For all 𝑛 ≥ 2 we have S 𝑛, 2 > 𝑛
 Take 𝑛–state Busy Beaver for 2 symbols



For every Turing machine 𝑀 with 𝑛 ≥ 2 states 
and 𝑚 ≥ 2 symbols having finite activity there 
is a 2-state, (4𝑛𝑚 + 5𝑚)-symbol Turing

machine 𝑀′ with finite activity such that

activity(𝑀′ ) > activity(𝑀) 

productivity(𝑀′) > productivity(𝑀).



By monotonicity in number of states, 
𝑀 with 𝑛 + 1 states and 𝑚 symbols 
increases activity and productivity.

Classical construction of Shannon 
transforms it into equivalent 2-state 
machine with 

4𝑚 𝑛 + 1 + 𝑚 = 4𝑛𝑚 + 5𝑚
symbols.



For every Turing machine M with 𝑛 ≥ 2 states 
and 𝑚 ≥ 3 symbols having finite activity there 
is an 𝑛 -state, 3𝑚 -symbol Turing machine
𝑀′ with finite activity such that

activity(𝑀′ ) > activity(𝑀).



0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 1 0 0 0 0 0

2

0 0 0 0 1 1 0 0 0 0

1

Idea: Let head bounce on additional symbols
with subscripts L, R 



0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 1L 0 0 0 0 0

2

0 0 0 0 1L 1R 0 0 0 0

1

0 0 0 0 1 1R 0 0 0 0

1

0 0 0 0 1 1 0 0 0 0

1



Attribution: By Steve from washington, dc, usa (American Beaver) [CC BY-SA 2.0 
(http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons



COMPUTING THE BUSY BEAVER FUNCTION 

(Chaitin 1987):

„…to information theorists it is clear that the 
correct measure is bits, not states. .. 

…to deal with Σ(number of bits) one would 
need a model of a binary computer as simple 
and compelling as the Turing machine model, 
and no obvious natural choice is at hand.”



 Reasonable programming languages encode
𝑛-state Turing machines (fixed 𝑚) in 
𝑂(𝑛 log 𝑛) bits (not sure about Befunge and 
Ook!)

 Turing machines encode 𝑛 log 𝑛 bits of 
programme code in 𝑂(𝑛) states by 
introspective computing 


