INTRODUCTION O NS MULLER TMS

Topoloo

Det. ω -NNs 000000000 Nondet. ω -RNNs 000000000 Conclusion 0

Expressive Power of Evolving Neural Networks Working on Infinite Input Streams

Olivier Finkel¹ Joint work with Jérémie Cabessa²

¹ CNRS and University Paris 7
 ² Laboratoire d'Économie Mathématique, Université Paris 2

FCT 2017, Bordeaux 12 Septembre 2017

Expressive Power of Evolving Neural Networks

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロト 不得下 イヨト イヨト 二日

INTRODUCTION

- The computational capabilities of recurrent neural networks have mainly been studied in the context of classical computation: McCulloch & Pitts (1943), Turing (1948), Kleene (1956), von Neumann (1958), Minsky (1967), Papert (1969),..., Siegelmann & Sontag (1994-1995),...
- We provide a characterization of the computational power of recurrent neural networks in terms of their attractor dynamics, i.e., in the context of infinite input stream computation.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

INTRODUCTION	RNNs	Muller TMs	Topology	Det. ω -NNs	Nondet. ω -RNNs	CONCLUSION
•	00000	00	0000	0000000000	00000000	0

INTRODUCTION

- The computational capabilities of recurrent neural networks have mainly been studied in the context of classical computation: McCulloch & Pitts (1943), Turing (1948), Kleene (1956), von Neumann (1958), Minsky (1967), Papert (1969),..., Siegelmann & Sontag (1994-1995),...
- We provide a characterization of the computational power of recurrent neural networks in terms of their attractor dynamics, i.e., in the context of infinite input stream computation.

INTRODUCTIONRNNsMULLER TMsTOPOLOGYDET. ω -NNsNondet. ω -RNNs0 \bullet 0000000000000000000000000000

RECURRENT NEURAL NETWORK

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

BOOLEAN NEURAL NETWORKS

$$x_i(t+1) = \theta\left(\sum_{j=1}^N a_{ij} \cdot x_j(t) + \sum_{j=1}^M b_{ij} \cdot u_j(t) + c_i\right)$$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

SIGMOIDAL NEURAL NETWORKS

$$x_i(t+1) = \sigma \left(\sum_{j=1}^N a_{ij} \cdot x_j(t) + \sum_{j=1}^M b_{ij} \cdot u_j(t) + c_i \right)$$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

SIGMOIDAL NEURAL NETWORKS

$$x_{i}(t+1) = \sigma \left(\sum_{j=1}^{\sigma} a_{ij}(t) \cdot x_{j}(t) + \sum_{j=1}^{\sigma} b_{ij}(t) \cdot u_{j}(t) + c_{i}(t) \right)$$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

<ロ> (日) (日) (日) (日) (日)

INTRODUCTION	RNNS	Muller TMs	Topology	Det. ω -NNs	Nondet. ω -RNNs	CONCLUSION
0	00000	00	0000	0000000000	00000000	0

NEURAL NETWORKS

We consider three models of NNs:

- 1. Boolean rational NNs:
- 2. Sigmoidal static rational NNs:
- 3. Sigmoidal bi-valued evolving rational MNs:

B-NN[Q]s St-NN[Q]s Ev2-NN[Q]s

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

NEURAL NETWORKS

We consider three models of NNs:

- 1. Boolean rational NNs:
- 2. Sigmoidal static rational NNs:
- 3. Sigmoidal bi-valued evolving rational NNs:

 $\mathsf{B}\text{-}\mathsf{N}\mathsf{N}[\mathbb{Q}]\mathsf{s}$

St-NN[Q]s Ev₂-NN[Q]s

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

INTRODUCTION O RNNs Muller TMs 00000 00

Topolog 0000 Det. ω-NNs 0000000000 Nondet. ω -RNNs 000000000

CONCLUSION O

NEURAL NETWORKS

We consider three models of NNs:

- 1. Boolean rational NNs:
- 2. Sigmoidal static rational NNs:
- 3. Sigmoidal bi-valued evolving rational NNs:

B-NN[\mathbb{Q}]s St-NN[\mathbb{Q}]s Ev₂-NN[\mathbb{Q}]s

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

イロン イヨン イヨン イヨン

NEURAL NETWORKS

We consider three models of NNs:

- 1. Boolean rational NNs:
- 2. Sigmoidal static rational NNs:
- 3. Sigmoidal bi-valued evolving rational NNs:

 $\begin{array}{l} \mathsf{B}\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s}\\ \mathsf{St}\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s}\\ \mathsf{E}\mathsf{v}_2\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s} \end{array}$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロト イポト イヨト イヨト

RESULTS (CLASSICAL COMPUTATION)

 BOOLEAN	STATIC	BI-VALUED EVOLVING
 FSA	ТМ	TM/poly(A)
REG	Р	P/poly
Kleene 56	Siegelmann &	Cabessa &
 Minsky 67	Sontag 95	Siegelmann 11,14

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

Muller Turing Machine

A *Muller Turing machine* consists of a classical TM with Muller acceptance condition. Muller table T: collection of accepting sets of states.

- ► The ω -word u is *accepted* by \mathcal{M} if there is an infinite run ρ_u of the machine \mathcal{M} on u such that $\inf(\rho_u) \in \mathcal{T}$
- The ω-language accepted by M is the set of ω-words accepted by M.

イロト イポト イヨト イヨト 二日

Complexity of ω -languages

The question naturally arises of the complexity of ω -languages accepted by various kinds of automata.

A way to study the complexity of ω -languages is to consider their topological complexity.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロト 不得 トイヨト イヨト

INTRODUCTION	RNNS	Muller TMs	TOPOLOGY	Det. ω -NNs	Nondet. ω -RNNs	CONCLUSION
0	00000	00	●000	0000000000	00000000	0

Topology on Σ^{ω}

The natural prefix metric on the set Σ^{ω} of ω -words over Σ is defined as follows:

For $u, v \in \Sigma^{\omega}$ and $u \neq v$ let

 $\delta(u,v) = 2^{-n}$

where n is the least integer such that:

the $(n+1)^{st}$ letter of u is different from the $(n+1)^{st}$ letter of v.

This metric induces on Σ^ω the usual Cantor topology for which :

- open subsets of Σ^{ω} are in the form $W.\Sigma^{\omega}$, where $W \subseteq \Sigma^{\star}$.
- ► closed subsets of Σ^{ω} are complements of open subsets of Σ^{ω} .

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

INTRODUCTION	RNNS	Muller TMs	TOPOLOGY	Det. ω -NNs	Nondet. ω -RNNs	CONCLUSION
0	00000	00	0000	0000000000	00000000	0

BOREL HIERARCHY

 Σ_1^0 is the class of open subsets of Σ^{ω} ,

 Π_1^0 is the class of closed subsets of Σ^{ω} ,

For any countable ordinal $\alpha \geq 2$:

 Σ^0_{α} is the class of countable unions of subsets of Σ^{ω} in $\bigcup_{\gamma < \alpha} \Pi^0_{\gamma}$.

 Π^0_{α} is the class of complements of Σ^0_{α} -sets

 $\Delta^0_{\alpha} = \Pi^0_{\alpha} \cap \Sigma^0_{\alpha}.$

A set $X \subseteq \Sigma^{\omega}$ is a Borel set iff it is in $\bigcup_{\alpha < \omega_1} \Sigma^0_{\alpha} = \bigcup_{\alpha < \omega_1} \Pi^0_{\alpha}$ where ω_1 is the first uncountable ordinal.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

BOREL HIERARCHY

Below an arrow \rightarrow represents a strict inclusion between Borel classes.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ Q () Jérémie Cabessa & Olivier Finkel NTRODUCTION RNNS MULLER TMS TOPOLOGY DET. ω -NNS Nondet. ω -RNNS Conclusion of the second second

BEYOND THE BOREL HIERARCHY

There are some subsets of Σ^{ω} which are not Borel. Beyond the Borel hierarchy is the projective hierarchy.

The class of Borel subsets of Σ^{ω} is strictly included in the class Σ_1^1 of analytic sets which are obtained by projection of Borel sets. A set $E \subseteq \Sigma^{\omega}$ is in the class Σ_1^1 iff :

 $\exists F \subseteq (\Sigma \times \{0,1\})^{\omega}$ such that F is Π_2^0 and

E is the projection of F onto Σ^{ω}

A set $E \subseteq \Sigma^{\omega}$ is in the class Π_1^1 iff $\Sigma^{\omega} - E$ is in Σ_1^1 . SUSLIN'S THEOREM states that : Borel sets $= \Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

The attractors are assumed to be classified into two possible kinds: accepting or rejecting.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

► An infinite Boolean input stream is accepted by N if the corresponding Boolean output stream visits a accepting attractor.

イロト 不得下 イヨト イヨト 二日

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

An infinite Boolean input stream is rejected by N if the corresponding Boolean output stream visits a rejecting attractor.

イロト 不得下 イヨト イヨト 二日

Deterministic ω -NNs

We consider RNNs with Boolean input and output cells, sigmoidal internal cells, and working on infinite input streams.

The set of all input streams that are accepted by *N* is the ω-language recognized by *N*.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INTRODUCTIONRNNsMuller TMsTopologyDet. ω -NNsNondet. ω -RNNsConclus0000000000000000000000000000000

Deterministic ω -NNs

We consider two models of deterministic NNs:

- 1. static rational NNs:
- 2. bi-valued evolving rational NNs:

D-St-NN[Q]s D-Ev₂-NN[Q]s

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ () Jérémie Cabessa & Olivier Finkel Muller TMs

Det. ω -NNs 000000000

Nondet. ω -RNNs

Deterministic ω -NNs

INTRODUCTION

We consider two models of deterministic NNs:

- 1. static rational NNs:

 $\mathsf{D}\text{-}\mathsf{St}\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s}$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

(日) (圖) (E) (E) (E)

Muller TMs INTRODUCTION Det. ω -NNS 000000000

Nondet. ω -RNNs

Deterministic ω -NNs

We consider two models of deterministic NNs:

- 1. static rational NNs:
- 2. bi-valued evolving rational NNs:

D-St-NN[Q]s $D-Ev_2-NN[\mathbb{Q}]s$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

Jérémie Cabessa & Olivier Finkel

3

イロン イヨン イヨン イヨン

Muller TMs INTRODUCTION Det. ω -NNS 000000000

Nondet. ω -RNNs

Deterministic ω -NNs

We consider two models of deterministic NNs:

- 1. static rational NNs:
- 2. bi-valued evolving rational NNs:

D-St-NN[Q]s $D-Ev_2-NN[\mathbb{Q}]s$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

Jérémie Cabessa & Olivier Finkel

3

イロン イヨン イヨン イヨン

INTRODUCTION	RNNS	Muller TMs	Topology	Det. ω -NNs	Nondet. ω -RNNs	Conclusion
0	00000	00	0000	0000000000	00000000	0

RESULTS

Relationship between the models:

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

RESULTS

THEOREM (STAIGER (1997), CABESSA & VILLA (2016))

Let $L \subseteq (\mathbb{B}^M)^{\omega}$. The following conditions are equivalent.

- $\blacktriangleright \ L \in BC(\Pi_2^0)$
- L is recognizable by some deterministic Muller TM
- ▶ L is recognizable by some D-St-NN[ℚ]

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロト 不得 とくまとう きょう

RESULTS

THEOREM (CABESSA & VILLA (2016))

Let $L \subseteq (\mathbb{B}^M)^{\omega}$. The following conditions are equivalent.

- $L \in BC(\mathbf{\Pi_2^0});$
- L is recognizable by some D-Ev₂-NN[Q];

Results – Summary

DET.	Static	BI-VALUED EVOLVING
	$D ext{-}St ext{-}NN[\mathbb{Q}]s$	$D\text{-}Ev_2\text{-}NN[\mathbb{Q}]s$
	$= BC(\Pi_2^0)$	$= BC(\mathbf{\Pi_2^0})$
	Turing (Muller)	super-Turing

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deterministic ω -NNs

We consider bi-valued evolving rational NNs with only one evolving weight:

D-Ev₂-NN[\mathbb{Q}, α]s, where $\alpha \in \{0, 1\}^{\omega}$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

(日) (圖) (E) (E) (E)

Relativized Classes

If $L \subseteq X^{\omega}$ and Γ is a topological class, then for $\alpha \in \{0,1\}^{\omega}$, $L \in \Gamma(\alpha)$ iff

there exists some $L' \subseteq (X \times \{0,1\})^{\omega}$ such that $L' \in \Gamma$, and

$$[(\forall x \in X^{\omega}) \ x \in L \iff (x, \alpha) \in L']$$

i.e. $L \in \Gamma(\alpha)$ iff L is the section of $L' \in \Gamma$ in α

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ Q () Jérémie Cabessa & Olivier Finkel INTRODUCTION O MULLER TMS

Topolo

Det. ω-NNs 000000000 Nondet. ω -RNNs 000000000

Conclusion O

RESULTS

Theorem

Let $L \subseteq (\mathbb{B}^M)^{\omega}$. The following conditions are equivalent.

- ► $L \in BC(\Pi_2^0)(\alpha)$, for some $\alpha \in \{0,1\}^{\omega}$
- L is recognizable by some D-Ev₂-NN[Q, α]

・ロト ・ 四ト ・ ヨト ・ ヨ

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

INTRODUCTION O RNNS MULLER TMS 00000 00

Topolog

Det. ω -NNs 00000000•

Nondet. ω -RNNs 000000000

CONCLUSION O

RESULTS

PROPOSITION

There exist some infinite sequence $(\alpha_k)_{k<\omega_1}$, where each $\alpha_i\in\{0,1\}^{\omega}$, such that

 $BC(\Pi_2^0)(\alpha_i) \subsetneq BC(\Pi_2^0)(\alpha_j)$

for all $i < j < \omega_1$.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Nondeterministic ω -NNs

The NNs are provided with an additional Boolean guess cell.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロン イロン イヨン イヨン 三日

Nondeterministic ω -NNs

The NNs are provided with an additional Boolean guess cell.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

(日) (圖) (E) (E) (E)

Nondeterministic ω -NNs

The NNs are provided with an additional Boolean guess cell.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

3

ヘロト 人間 ト 人 ヨト 人 ヨトー

Nondeterministic ω -NNs

The NNs are provided with an additional Boolean guess cell.

The attractors are assumed to be classified into two possible kinds: accepting or rejecting.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nondeterministic ω -NNs

The NNs are provided with an additional Boolean guess cell.

Input stream s ∈ (𝔅^M)^ω accepted by N iff there exists some guess g ∈ 𝔅^ω s.t. N(s,g) enters an accepting attractor.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロト 不得下 イヨト イヨト 二日

Nondeterministic ω -NNs

The NNs are provided with an additional Boolean guess cell.

▶ Input stream $s \in (\mathbb{B}^M)^{\omega}$ rejected by \mathcal{N} iff for all guess $g \in \mathbb{B}^{\omega}$, $\mathcal{N}(s,g)$ does not enter an accepting attractor.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

< ロ > < 同 > < 回 > < 回 > < 回 > <

Nondeterministic ω -NNs

We consider two models of nondeterministic NNs:

- 1. static rational NNs:
- 2. bi-valued evolving rational NNs:

N-St-NN[Q]s $N-Ev_2-NN[Q]s$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ Q () Jérémie Cabessa & Olivier Finkel Nondeterministic ω -NNs

We consider two models of nondeterministic NNs:

- 1. static rational NNs:
- 2. bi-valued evolving rational NNs:

tic NNs: N-St-NN[ℚ]s

 $N-Ev_2-NN[Q]$ s

JÉRÉMIE CABESSA & OLIVIER FINKEL

(日) (圖) (E) (E) (E)

INTRODUCTION O Is Muller TMs 00 00

Topology 0000 Det. ω-NNs 0000000000 Nondet. ω -RNNs 00000000 Conclusion O Nondeterministic ω -NNs

Muller TMs

We consider two models of nondeterministic NNs:

1. static rational NNs:

INTRODUCTION

2. bi-valued evolving rational NNs:

 $\begin{array}{l} \mathsf{N}\text{-}\mathsf{St}\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s}\\ \mathsf{N}\text{-}\mathsf{Ev}_2\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s} \end{array}$

◆□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ JÉRÉMIE CABESSA & OLIVIER FINKEL

Det. ω -NNS

Nondeterministic ω -NNs

Muller TMs

We consider two models of nondeterministic NNs:

1. static rational NNs:

INTRODUCTION

2. bi-valued evolving rational NNs:

 $\begin{array}{l} \mathsf{N}\text{-}\mathsf{St}\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s}\\ \mathsf{N}\text{-}\mathsf{Ev}_2\text{-}\mathsf{NN}[\mathbb{Q}]\mathsf{s} \end{array}$

◆□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ JÉRÉMIE CABESSA & OLIVIER FINKEL

Det. ω -NNS

INTRODUCTION	RNNS	Muller TMs	Topology	Det. ω -NNS	Nondet. ω -RNNs	Conclusion
0	00000	00	0000	0000000000	00000000	0

RESULTS

Relationship between the models:

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

RESULTS

THEOREM (STAIGER (1997), CABESSA & VILLA (2016))

Let $L \subseteq (\mathbb{B}^M)^{\omega}$. The following conditions are equivalent.

- $L \in \Sigma_1^1$
- L is recognizable by some nondeterministic Muller TM
- ► L is recognizable by some N-St-NN[ℚ]

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

RESULTS

THEOREM (CABESSA & VILLA (2016))

Let $L \subseteq (\mathbb{B}^M)^{\omega}$. The following conditions are equivalent.

- $L \in \Sigma_1^1$;
- L is recognizable by some N-Ev₂-NN[Q];

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Results – Summary

NONDET.	STATIC	BI-VALUED EVOLVING
	$N ext{-}St ext{-}NN[\mathbb{Q}]s$	$N\text{-}Ev_2\text{-}NN[\mathbb{Q}]s$
	$=\Sigma_1^1$	$= \Sigma_1^1$
	Turing (Muller)	super-Turing

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ つへで Jérémie Cabessa & Olivier Finkel
 Introduction
 RNNs
 Muller TMs
 Topology
 Det.
 \$\oldsymbol{o}\colored\colore\colored\colore\colored\colored\colored\colore\colored\colore\colo

Nondeterministic ω -RNNs

1. We consider bi-valued evolving rational NNs with only one evolving weight:

 $\mathsf{N}\text{-}\mathsf{Ev}_2\text{-}\mathsf{NN}[\mathbb{Q},\alpha]\mathsf{s},$ where $\alpha\in\{0,1\}^\omega$

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

イロト 不得下 イヨト イヨト 二日

INTRODUCTION	RNNS	Muller TMs	Topology	Det. ω -NNs	Nondet. ω -RNNs
0	00000	00	0000	0000000000	000000000

RESULTS

Theorem

Let $L \subseteq (\mathbb{B}^M)^{\omega}$. The following conditions are equivalent.

- $L \in \Sigma_1^1(\alpha)$, for some $\alpha \in \{0, 1\}^{\omega}$
- L is recognizable by some
 N-Ev₂-NN[Q, α]

(日) (圖) (E) (E) (E)

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

INTRODUCTION O RNNS MULLER TMS 00000 00

Topolo 0000 Det. ω-NNs 000000000 Nondet. ω -RNNs 00000000

Conclusion O

RESULTS

PROPOSITION

There exist some infinite sequence $(\alpha_k)_{k<\omega_1}$, where each $\alpha_i\in\{0,1\}^{\omega}$, such that

$\Sigma_1^1(\alpha_i) \subsetneq \Sigma_1^1(\alpha_j)$

for all $i < j < \omega_1$.

EXPRESSIVE POWER OF EVOLVING NEURAL NETWORKS

JÉRÉMIE CABESSA & OLIVIER FINKEL

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

CONCLUSION

- We provided a precise characterization of the expressive power of evolving neural networks employing only one evolving weight.
- As a consequence, a proper hierarchy of classes of evolving neural nets, based on the complexity of their underlying evolving weights, can be obtained.
- The hierarchy contains chains of length ω₁ as well as uncountable antichains.
- The super-Turing computational capabilities of neural models is related to the issue of *hypercomputation*.
- Current physical theories are consistent with the possibility of hypercomputational systems (quantum, relativistic, etc.). No such systems are currently feasible or harnessable.