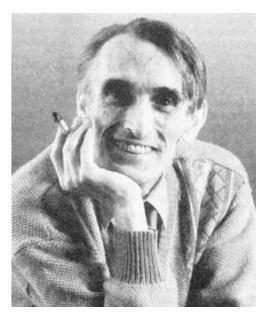
Automata and program analysis

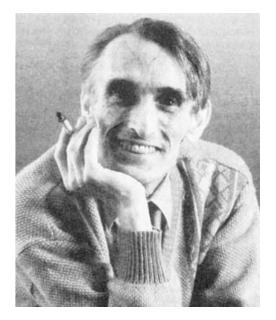
Thomas Colcombet FCT Bordeaux 13 September 2017

based on joint work with Laure Daviaud et Florian Zuleger

Weighted automata and tropical automata

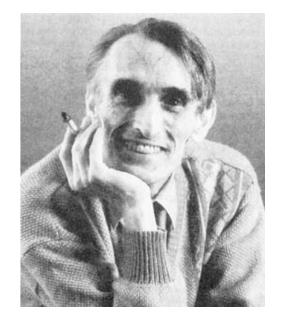


Consider a non-deterministic automaton (A,Q,I,F, Δ).



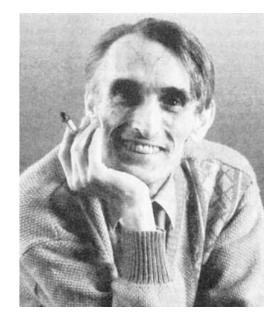
Consider a non-deterministic automaton (A,Q,I,F,Δ) .

It computes a language $L: A^* \rightarrow \{0,1\}$



Consider a non-deterministic automaton (A,Q,I,F,Δ) .

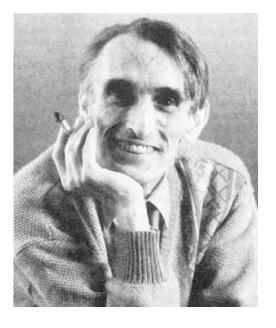
It computes a language L: $A^* \rightarrow \{0,1\}$ not accepted



Consider a non-deterministic automaton (A,Q,I,F,Δ) .

It computes a language L: $A^* \rightarrow \{0,1\}$ not accepted

Q states, initial I: Q \rightarrow {0,1}, final F: Q \rightarrow {0,1}, weights Δ : Q×A×Q \rightarrow {0,1}

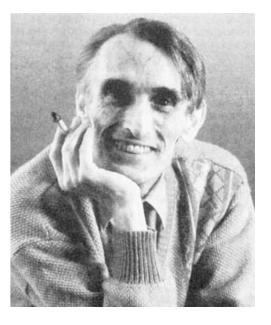


Consider a non-deterministic automaton (A,Q,I,F,Δ) .

It computes a language L: $A^* \rightarrow \{0,1\}$ not accepted

Q states, initial I: Q \rightarrow {0,1}, final F: Q \rightarrow {0,1}, weights Δ : Q×A×Q \rightarrow {0,1}

Definition: $u = a_1, a_2, ..., a_n \in L$ iff there exists an accepting run over it.

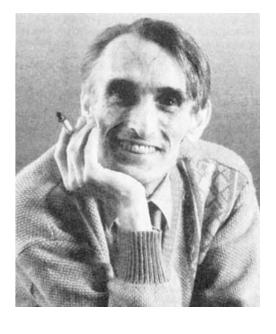


Consider a non-deterministic automaton (A,Q,I,F,Δ) .

It computes a language L: $A^* \rightarrow \{0,1\}$ not accepted

Q states, initial I: Q \rightarrow {0,1}, final F: Q \rightarrow {0,1}, weights Δ : Q×A×Q \rightarrow {0,1}

Definition: $u = a_1, a_2, ..., a_n \in L$ iff there exists an accepting run over it.



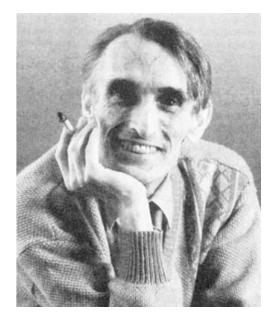
Consider a non-deterministic automaton (A,Q,I,F,Δ) .

It computes a language L: $A^* \rightarrow \{0,1\}$ not accepted

Q states, initial I: Q \rightarrow {0,1}, final F: Q \rightarrow {0,1}, weights Δ : Q×A×Q \rightarrow {0,1}

Definition: $u = a_1, a_2, ..., a_n \in L$ iff there exists an accepting run over it.

[Schützenberger 61] disjunction and conjunction can be replaced by the operation over an arbitrary semiring $(S, \oplus, \otimes, 0, 1)$.



Consider a non-deterministic automaton (A,Q,I,F,Δ) .

It computes a language L: $A^* \rightarrow \{0,1\}$ not accepted

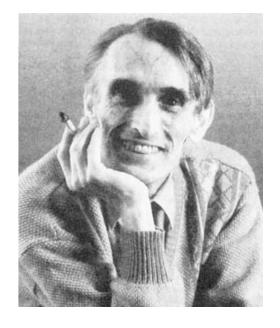
Q states, initial I: Q \rightarrow {0,1}, final F: Q \rightarrow {0,1}, weights Δ : Q×A×Q \rightarrow {0,1}

Definition: $u = a_1, a_2, ..., a_n \in L$ iff there exists an accepting run over it.

[Schützenberger 61] disjunction and conjunction can be replaced by the operation over an arbitrary semiring $(S, \oplus, \otimes, 0, 1)$.

An automaton (A,Q,I,F, Δ) with I: Q \rightarrow S, F: Q \rightarrow S, and Δ : Q×A×Q, computes a map L: A* \rightarrow S defined as

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \left(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \right) \otimes F(q_n)$$



A semiring $(S, \oplus, \otimes, 0, 1)$ is such that:

- (R, \oplus) is a commutative monoid with identity element 0: (a \oplus b) \oplus c = a \oplus (b \oplus c) ; 0 \oplus a = a \oplus 0 = a ; a \oplus b = b \oplus a
- (R, ⊕) is a monoid with identity element 1:
 (a⊗b) · c = a⊗(b⊗c) ; 1⊗a = a⊗1 = a
- Multiplication left and right distributes over addition: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$
- Multiplication by 0 annihilates S:
 - $0\otimes a = a\otimes 0 = 0$

A semiring $(S, \oplus, \otimes, 0, 1)$ is such that:

- (R, \oplus) is a commutative monoid with identity element 0: (a \oplus b) \oplus c = a \oplus (b \oplus c) ; 0 \oplus a = a \oplus 0 = a ; a \oplus b = b \oplus a
- (R, ⊕) is a monoid with identity element 1:
 (a⊗b) · c = a⊗(b⊗c) ; 1⊗a = a⊗1 = a
- Multiplication left and right distributes over addition: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$
- Multiplication by 0 annihilates S:
 - $0 \otimes a = a \otimes 0 = 0$

- multiplication addition

A semiring (S, ⊕, ⊗, 0, 1) is such that:
(R, ⊕) is a commutative monoid with identity element 0:
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) ; 0 ⊕ a = a ⊕ 0 = a ; a ⊕ b = b ⊕ a
(R, ⊕) is a monoid with identity element 1:
(a⊗b) ⋅ c = a⊗(b⊗c) ; 1⊗a = a⊗1 = a
Multiplication left and right distributes over addition:
a⊗(b ⊕ c) = (a⊗b) ⊕ (a⊗c) ; (a ⊕ b)⊗c = (a⊗c) ⊕ (b⊗c)
Multiplication by 0 annihilates S:

 $0\otimes a = a\otimes 0 = 0$

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

A semiring (S,⊕,⊗,0,1) is such that:
(R, ⊕) is a commutative monoid with identity element 0: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) ; 0 ⊕ a = a ⊕ 0 = a ; a ⊕ b = b ⊕ a
(R, ⊕) is a monoid with identity element 1: (a⊗b) ⋅ c = a⊗(b⊗c) ; 1⊗a = a⊗1 = a
Multiplication left and right distributes over addition: a⊗(b ⊕ c) = (a⊗b) ⊕ (a⊗c) ; (a ⊕ b)⊗c = (a⊗c) ⊕ (b⊗c)
Multiplication by 0 annihilates S:

 $0\otimes a = a\otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: - (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ - (R, \oplus) is a monoid with identity element 1: $(a \otimes b) \cdot c = a \otimes (b \otimes c); 1 \otimes a = a \otimes 1 = a$ - Multiplication left and right distributes over addition: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c); (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ - Multiplication by 0 annihilates S:

 $0\otimes a = a\otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \left(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \right) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Non-deterministic automata

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (**R**,+,×,0,1)

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (**R**,+,×,0,1) Computes the number of runs of the NDA

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (**R**,+,×,0,1) Computes the number of runs of the NDA

« Rat semiring »: (Rat(A), \cup , \cdot , Ø, { ε })

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1) Computes the number of

« Rat semiring »: (Rat(A), \cup , \cdot , \emptyset , { ε })

runs of the NDA Rational transducers

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Reals/Integers/Rationals/Natural numbers: $(\mathbf{R}, +, \times, 0, 1)$ Computes the number of

« Rat semiring »: (Rat(A), \cup , \cdot , \emptyset , { ε })

Tropical semiring: (\mathbf{R} u{- ∞ },max,+,- ∞ ,0) $(\mathbf{R}\cup\{+\infty\},\min,+,+\infty,0), (\mathbf{N}\cup\{-\infty\},\max,+,-\infty,0), (\mathbf{N}\cup\{+\infty\},\min,+,+\infty,0))$

Non-deterministic automata

runs of the NDA

Rational transducers

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Reals/Integers/Rationals/Natural numbers: $(\mathbf{R}, +, \times, 0, 1)$ Computes the number of

« Rat semiring »: (Rat(A), \cup , \cdot , Ø, { ε })

Tropical semiring: $(\mathbf{R}\cup\{-\infty\},\max,+,-\infty,0)$ $(\mathbf{R}\cup\{+\infty\},\min,+,+\infty,0)$, $(\mathbf{N}\cup\{-\infty\},\max,+,-\infty,0)$, $(\mathbf{N}\cup\{+\infty\},\min,+,+\infty,0)$

Non-deterministic automata

runs of the NDA

Rational transducers

multiplication A semiring $(S, \oplus, \otimes, 0, 1)$ is such that: addition (R, \oplus) is a commutative monoid with identity element 0: $(a \oplus b) \oplus c = a \oplus (b \oplus c); 0 \oplus a = a \oplus 0 = a; a \oplus b = b \oplus a$ Gives rise to (R, \oplus) is a monoid with identity element 1: product of S $(a \otimes b) \cdot c = a \otimes (b \otimes c)$; $1 \otimes a = a \otimes 1 = a$ valued matrices Multiplication left and right distributes over addition: that form a $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ monoid. Multiplication by **0 annihilates S**: $0 \otimes a = a \otimes 0 = 0$

$$L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$$

Boolean semiring: $(\{0,1\},\vee,\wedge,0,1)$

Reals/Integers/Rationals/Natural numbers: (R,+,×,0,1) Computes the number of

« Rat semiring »: (Rat(A), \cup , \cdot , Ø, { ε })

Tropical semiring: $(\mathbf{R}\cup\{-\infty\},\max,+,-\infty,0)$ Tropical automata $(\mathbf{R}\cup\{+\infty\},\min,+,+\infty,0), (\mathbf{N}\cup\{-\infty\},\max,+,-\infty,0), (\mathbf{N}\cup\{+\infty\},\min,+,+\infty,0)$

Non-deterministic automata

runs of the NDA

Rational transducers

Tropical automata

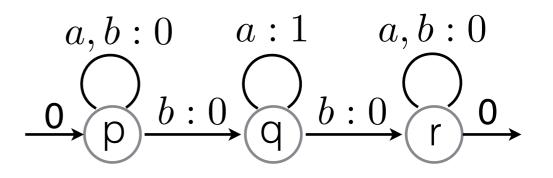
$L(a_{1}a_{2}...a_{n}) = \bigoplus_{p_{0},...,p_{n}} I(q_{0}) \otimes \left(\bigotimes_{i=1}^{n} \Delta(q_{i-1},a_{i},q_{i}) \right) \otimes F(q_{n})$

 $\begin{array}{l} & \text{Tropical automata} \\ L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \big) \otimes F(q_n) \\ & (\underbrace{\mathsf{N}}_{\mathsf{L}(\mathsf{u}) \geq n} & \text{if and only if} & (\exists run \, \rho \text{ over u}) \text{ weight}(\rho) \geq n \end{array}$

 $\begin{array}{l} & \text{Tropical automata} \\ L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \big) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{L(u)\geq n}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if} (\exists run \ p \ over \ u) \ weight(p)\geq n \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_{i-1},a_i,q_i)}_{if and only if}) \otimes F(q_n) \\ & (\underbrace{\mathsf{Nu}_{i=1}^{N} \Delta(q_i,q_i)}_{if and only if}) \otimes F(q_n$

Tropical automata $L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$ $(\mathbb{N}\cup\{-\infty\}, \max, +, -\infty, 0)$ L(u) \geq n if and only if (\exists run ρ over u) weight(ρ) \geq n

 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

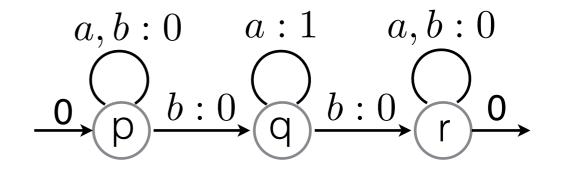


Tropical automata $L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^{''} \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n)$ $(N \cup \{-\infty\}, max, +, -\infty, 0)$ L(u) \geq n if and only if (\exists run ρ over u) weight(ρ) \geq n

 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

by convention zero-transitions $(-\infty/+\infty)$ are not displayed

(neutral for \otimes and absorbing for \otimes)

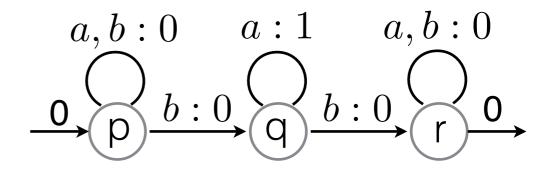


 $\begin{array}{l} & \text{Tropical automata} \\ L(a_1a_2\ldots a_n) = \bigoplus_{p_0,\ldots,p_n} \ I(q_0) \otimes \big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \big) \otimes F(q_n) \\ & (\underbrace{\mathsf{N}\cup\{-\infty\},\max,+,-\infty,0)}_{L(u)\geq n} \ \text{ if and only if } (\exists \ \text{run } \rho \ \text{over } u) \ \text{weight}(\rho) \geq n \end{array}$

 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

by convention zero-transitions $(-\infty/+\infty)$ are not displayed

(neutral for \otimes and absorbing for \otimes)



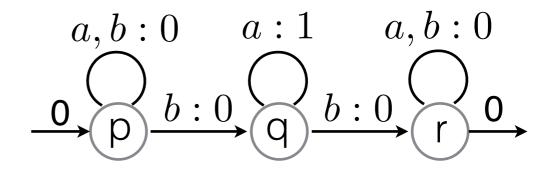
The max-plus automaton computes:

 $\begin{array}{l} \mbox{Tropical automata} \\ L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \big) \otimes F(q_n) \\ (\underbrace{\mathsf{Nu}_{-\infty}}_{L(u)\geq n}, \underbrace{\mathsf{max}_{+,-\infty}, 0}_{\text{if and only if}} (\exists run \, \rho \, \text{over } u) \, \text{weight}(\rho) \geq n \end{array}$

 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

by convention zero-transitions $(-\infty/+\infty)$ are not displayed

(neutral for \otimes and absorbing for \otimes)



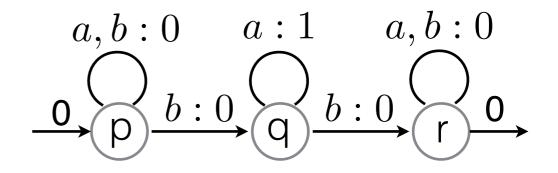
The max-plus automaton computes:

 $\begin{array}{l} \mbox{Tropical automata} \\ L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \big) \otimes F(q_n) \\ (\underbrace{\mathsf{Nu}_{-\infty}}_{L(u)\geq n}, \underbrace{\mathsf{max}_{+,-\infty}, 0}_{\text{if and only if}} (\exists run \, \rho \, \text{over } u) \, \text{weight}(\rho) \geq n \end{array}$

 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

by convention zero-transitions (- ∞ /+ ∞) are not displayed

(neutral for \otimes and absorbing for \otimes)



The max-plus automaton computes:

$$L_A: A^* \rightarrow \mathbf{N} \cup \{-\infty\}$$

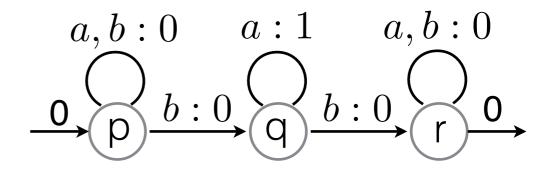
→ the size of the longest block of consecutive a's surrounded by 2 b's $\begin{aligned} & \text{Tropical automata} \\ L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \Big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \Big) \otimes F(q_n) \\ & (\underset{l(u)\geq n}{\text{Nu}} \{-\infty\},\underset{if and only if}{\text{min } l \in \infty} \{0\} \\ & (\exists run p \text{ over } u) \text{ weight}(p) \ge n \end{aligned}$

 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

by convention zero-transitions (- ∞ /+ ∞) are not displayed

(neutral for \otimes and absorbing for \otimes)

[Krob 94] The equality of max-plus definable functions is undecidable.



The max-plus automaton computes:

$$L_A: A^* \rightarrow \mathbf{N} \cup \{-\infty\}$$

U

→ the size of the longest block of consecutive a's surrounded by 2 b's $\begin{array}{l} & \text{Tropical automata} \\ L(a_1a_2...a_n) = \bigoplus_{p_0,...,p_n} I(q_0) \otimes \big(\bigotimes_{i=1}^n \Delta(q_{i-1},a_i,q_i) \big) \otimes F(q_n) \\ & (\underbrace{\mathsf{N}}_{U\{-\infty\}}, \underbrace{\mathsf{max}}_{i \neq 1}, -\infty, 0) \\ L(u) \geq n \quad \text{if and only if} \quad (\exists run \, \rho \text{ over } u) \text{ weight}(\rho) \geq n \end{array}$

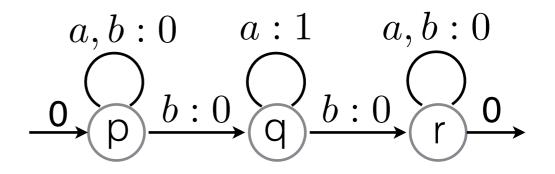
 $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ L(u) $\geq n$ if and only if $(\forall run \rho \text{ over } u) \text{ weight}(\rho) \geq n$

by convention zero-transitions $(-\infty/+\infty)$ are not displayed

(neutral for \otimes and absorbing for $\otimes)$

[Krob 94] The equality of max-plus definable functions is undecidable.

[Hashiguchi 81] The boundedness of distance automata is decidable. [Leung88] [Simon78,94] [Kirsten05] [C. & Bojanczyk 06] [C. 09] [Bojanczyk15]



The max-plus automaton computes:

$$L_A: A^* \rightarrow \mathbf{N} \cup \{-\infty\}$$

Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

NL-C

Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

NL-c

Emptiness of NDA ?

(I word w) (I run p over w) p is accepting

Universality of NDA?

 $(\forall word w)$ ($\exists run \rho over w$) ρ is accepting

Emptiness of NDA?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA?

 $(\forall word w)$ ($\exists run \rho over w$) ρ is accepting

PSPACE-c (powerset)

NL-c

Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ? (∀ word w) (∃ run ρ over w) ρ is accepting

PSPACE-c (powerset)

NL-c

ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0

Emptiness of NDA ?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ? (∀ word w) (∃ run ρ over w) ρ is accepting

ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0 PSPACE-c (powerset)

NL-c

NL-c

Emptiness of NDA ?

(I word w) (I run p over w) p is accepting

Universality of NDA ? (∀ word w) (∃ run ρ over w) ρ is accepting

ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0

ls a (Z∪{∞},max,+) automaton ≥ 0 ? (∀ word w) (∃ run ρ over w) weight(ρ)≥0 PSPACE-c (powerset)

NL-c

NL-c

Emptiness of NDA?

(∃ word w) (∃ run ρ over w) ρ is accepting

Universality of NDA ? (∀ word w) (∃ run ρ over w) ρ is accepting

ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0

ls a (Z∪{∞},max,+) automaton ≥ 0 ? (∀ word w) (∃ run ρ over w) weight(ρ)≥0 PSPACE-c (powerset)

NL-c

NL-c

undecidable [Krob92, other form]

Emptiness of NDA ? (3 word w) (3 run p over w) p is accepting

Universality of NDA ? (∀ word w) (∃ run ρ over w) ρ is accepting

ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0

Is a $(\mathbb{Z} \cup \{\infty\}, \max, +)$ automaton ≥ 0 ? (\forall word w) (\exists run ρ over w) weight(ρ) ≥ 0

ls a (N∪{-∞},max,+) automaton bounded? (∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n PSPACE-c (powerset)

NL-c

NL-c

undecidable [Krob92, other form]

Alternation of quantifiers Emptiness of NDA ? (3 word w) (3 run p over w) p is accepting

Universality of NDA ? (∀ word w) (∃ run p over w) p is accepting

ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0

Is a $(\mathbb{Z} \cup \{\infty\}, \max, +)$ automaton ≥ 0 ? (\forall word w) (\exists run ρ over w) weight(ρ) ≥ 0

ls a (N∪{-∞},max,+) automaton bounded? (∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n PSPACE-c (powerset)

NL-c

undecidable [Krob92, other form]

NL-c

Emptiness of NDA? NL-c (a word w) (a run p over w) p is accepting Universality of NDA? **PSPACE-**c (powerset) $(\forall word w)$ ($\exists run \rho over w$) p is accepting Is a ($\mathbb{Z} \cup \{\infty\}, \max, +$) automaton ≤ 0 ? NL-c $(\forall word w) (\forall run \rho over w) weight(\rho) \leq 0$ Is a ($\mathbb{Z} \cup \{\infty\}, \max, +$) automaton ≥ 0 ? undecidable $(\forall word w)$ ($\exists run \rho over w$) weight(ρ) ≥ 0 [Krob92, other form] Is a $(\mathbb{N} \cup \{-\infty\}, \max, +)$ automaton bounded? NL-c $(\exists n \in \mathbb{N})$ (\forall word w) (\forall run ρ over w) weight(p)≤n Is a $(\mathbb{N} \cup \{\infty\}, \min, +)$ automaton bounded? $(\exists n \in \mathbb{N})$ (\forall word w) (\exists run ρ over w) weight(p)≤n

Alternation of quantifiers	
Emptiness of NDA ? (∃ word w) (∃ run ρ over w) ρ is accepting	NL-c
Universality of NDA ? (∀ word w) (∃ run ρ over w) ρ is accepting	PSPACE-c (powerset)
ls a (Z∪{∞},max,+) automaton ≤ 0 ? (∀ word w) (∀ run ρ over w) weight(ρ)≤0	NL-c
ls a (Z∪{∞},max,+) automaton ≥ 0 ? (∀ word w) (∃ run ρ over w) weight(ρ)≥0	undecidable [Krob92, other form]
ls a (N∪{-∞},max,+) automaton bounded? (∃ n∈N) (∀ word w) (∀ run ρ over w) weight(ρ)≤n	NL-c
Is a $(\mathbb{N} \cup \{\infty\}, \min, +)$ automaton bounded?	PSPACE-c

 $(\exists n \in \mathbb{N})$ (\forall word w) (\exists run ρ over w) weight(ρ) $\leq n$ [Hashiguchi81,Leung84]

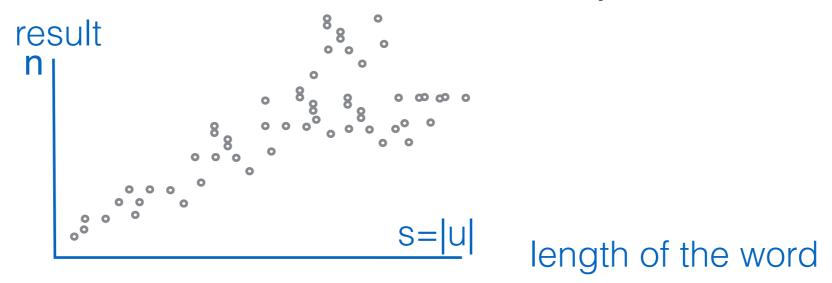
Alternation of quantifiers Emptiness of NDA? NL-c (I word w) (I run p over w) p is accepting Universality of NDA? **PSPACE-**c (powerset) $(\forall word w)$ ($\exists run \rho over w$) p is accepting Is a ($\mathbb{Z} \cup \{\infty\}, \max, +$) automaton ≤ 0 ? NL-c $(\forall word w) (\forall run \rho over w) weight(\rho) \leq 0$ Is a ($\mathbb{Z} \cup \{\infty\}$, max, +) automaton ≥ 0 ? undecidable $(\forall word w) (\exists run \rho over w) weight(\rho) \ge 0$ [Krob92, other form] Is a $(\mathbb{N} \cup \{-\infty\}, \max, +)$ automaton bounded? NL-c $(\exists n \in \mathbb{N})$ (\forall word w) (\forall run ρ over w) weight(ρ)≤n Is a $(\mathbb{N} \cup \{\infty\}, \min, +)$ automaton bounded? **PSPACE-**c $(\exists n \in \mathbb{N})$ (\forall word w) (\exists run ρ over w) weight(ρ) \leq n [Hashiguchi81, Leung84] Given a ($\mathbb{N} \cup \{\infty\}, \max, +$) automaton, find the least $\theta \in [0, 1]$ such that $(\exists a) (\forall s \in \mathbb{N}) (\exists word w, |w| \ge s) (\forall run \rho over w) weight(\rho) \le as^{\theta}$

Alternation of quantifiers Emptiness of NDA? NL-c (I word w) (I run p over w) p is accepting Universality of NDA? **PSPACE-**c (powerset) $(\forall word w)$ ($\exists run \rho over w$) p is accepting Is a ($\mathbb{Z} \cup \{\infty\}, \max, +$) automaton ≤ 0 ? NL-c $(\forall word w) (\forall run \rho over w) weight(\rho) \leq 0$ Is a ($\mathbb{Z} \cup \{\infty\}$, max, +) automaton ≥ 0 ? undecidable $(\forall word w) (\exists run \rho over w) weight(\rho) \ge 0$ [Krob92, other form] Is a $(\mathbb{N} \cup \{-\infty\}, \max, +)$ automaton bounded? NL-c $(\exists n \in \mathbb{N})$ (\forall word w) (\forall run ρ over w) weight(p)≤n Is a (N∪{∞},min,+) automaton bounded? **PSPACE-**c $(\exists n \in \mathbb{N})$ (\forall word w) (\exists run ρ over w) weight(ρ) \leq n [Hashiguchi81, Leung84] Given a ($\mathbb{N} \cup \{\infty\}, \max, +$) automaton, find the least $\theta \in [0, 1]$ such that $(\exists a) (\forall s \in \mathbb{N}) (\exists word w, |w| \ge s) (\forall run \rho over w) weight(\rho) \le as^{\theta}$ [C., Daviaud, Zuleger 14] This θ exists and is rational. Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

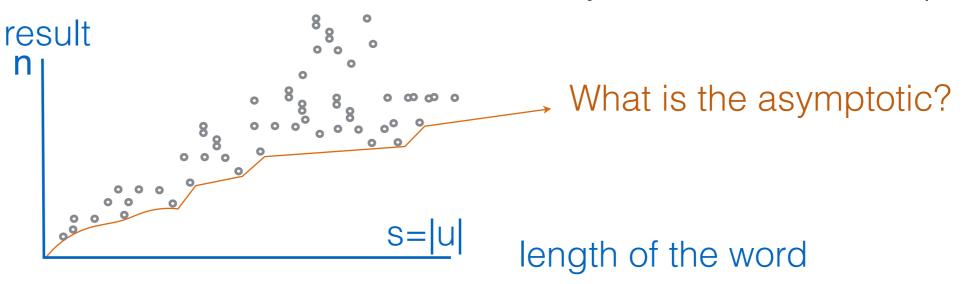
Given a $(\mathbb{N} \cup \{\infty\}, \max, +)$ automaton, find the least $\theta \in [0, 1]$ such that ($\exists a$) ($\forall s \in \mathbb{N}$) ($\exists word w, |w| \ge s$) ($\forall run \rho over w$) weight(ρ) $\le as^{\theta}$

Given a $(\mathbb{N} \cup \{\infty\}, \max, +)$ automaton, find the least $\theta \in [0, 1]$ such that ($\exists a$) ($\forall s \in \mathbb{N}$) ($\exists word w, |w| \ge s$) ($\forall run \rho over w$) weight(ρ) $\le as^{\theta}$

Given a $(\mathbb{N} \cup \{\infty\}, \max, +)$ automaton, find the least $\theta \in [0, 1]$ such that ($\exists a$) ($\forall s \in \mathbb{N}$) ($\exists word w, |w| \ge s$) ($\forall run \rho over w$) weight(ρ) $\le as^{\theta}$

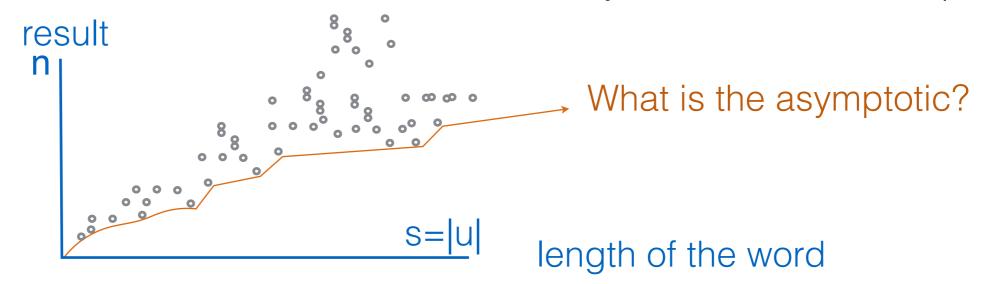


Given a $(\mathbb{N} \cup \{\infty\}, \max, +)$ automaton, find the least $\theta \in [0, 1]$ such that ($\exists a$) ($\forall s \in \mathbb{N}$) ($\exists word w, |w| \ge s$) ($\forall run \rho over w$) weight(ρ) $\le as^{\theta}$



Given a $(\mathbb{N} \cup \{\infty\}, \max, +)$ automaton, find the least $\theta \in [0, 1]$ such that ($\exists a$) ($\forall s \in \mathbb{N}$) ($\exists word w, |w| \ge s$) ($\forall run \rho over w$) weight(ρ) $\le as^{\theta}$

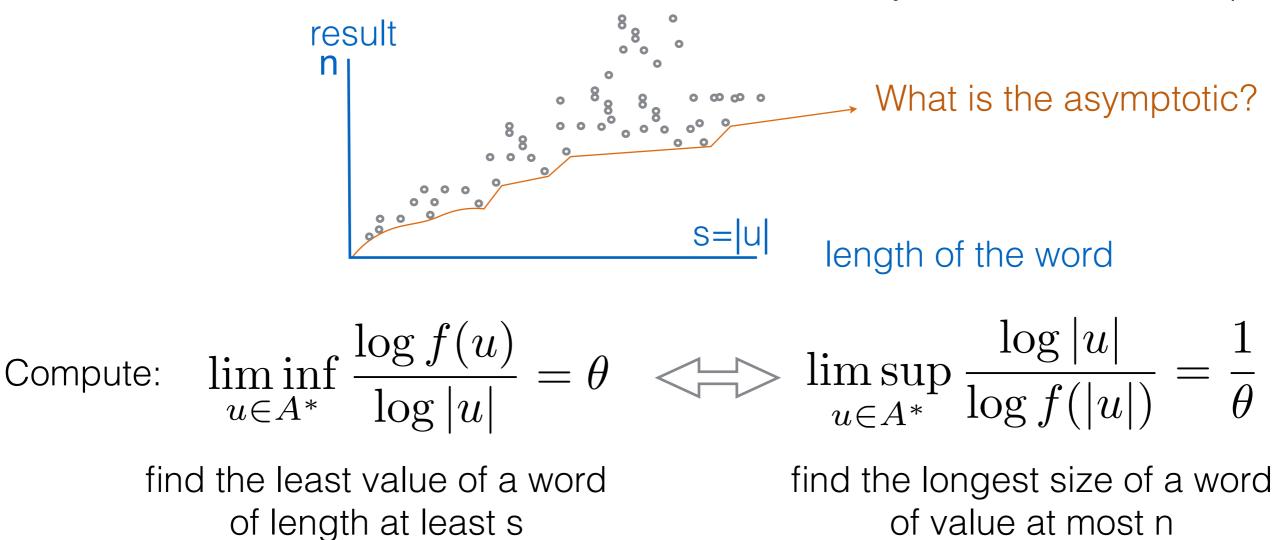
[C., Daviaud, Zuleger 14] This θ exists and is rational. Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.



Compute:
$$\liminf_{u \in A^*} \frac{\log f(u)}{\log |u|} = \theta$$

find the least value of a word of length at least s

Given a $(\mathbb{N} \cup \{\infty\}, \max, +)$ automaton, find the least $\theta \in [0, 1]$ such that ($\exists a$) ($\forall s \in \mathbb{N}$) ($\exists word w, |w| \ge s$) ($\forall run \rho over w$) weight(ρ) $\le as^{\theta}$



Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

e.g. for universality $I(W) = \{P \subseteq Q : P = Reach(I,u) \text{ for some } u \in W\}$

Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

e.g. for universality $I(W) = \{P \subseteq Q : P = Reach(I,u) \text{ for some } u \in W\}$

In our case,

 $I(W) = \{ f: Q \times Q \rightarrow N : there is a run that displays this behavior \} \subseteq P(N^{Q \times Q})$

Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

```
e.g. for universality I(W) = \{P \subseteq Q : P = Reach(I,u) \text{ for some } u \in W\}
```

In our case, $I(W) = \{ f: Q \times Q \rightarrow N : there is a run that displays this behavior \} \subseteq P(N^{Q \times Q})$

Ingredient 2.

Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

e.g. for universality $I(W) = \{P \subseteq Q : P = Reach(I,u) \text{ for some } u \in W\}$

In our case, $I(W) = \{ f: Q \times Q \rightarrow N : there is a run that displays this behavior \} \subseteq P(N^{Q \times Q})$

Ingredient 2.

Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.

Define presentable sets families of such sets of maps that are nicely behaved (that can be algorithmically handled). In our case unions of convex polytopes in $\mathbb{R}^{Q \times Q}$ representing simultaneous asymptotic behaviors.

Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

e.g. for universality $I(W) = \{P \subseteq Q : P = Reach(I,u) \text{ for some } u \in W\}$

In our case, $I(W) = \{ f: Q \times Q \rightarrow N : there is a run that displays this behavior \} \subseteq P(N^{Q \times Q})$

Ingredient 2.

Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.

Define presentable sets families of such sets of maps that are nicely behaved (that can be algorithmically handled). In our case unions of convex polytopes in $\mathbb{R}^{Q \times Q}$ representing simultaneous asymptotic behaviors.

Step 4.

Compute a presentable equivalent (up to approximation) of I(A*)

Ingredient 1.

Given a set of words W, collect an information I(W) sufficient for understanding its behavior in any context.

e.g. for universality $I(W) = \{P \subseteq Q : P = Reach(I,u) \text{ for some } u \in W\}$

In our case, $I(W) = \{ f: Q \times Q \rightarrow N : there is a run that displays this behavior \} \subseteq P(N^{Q \times Q})$

Ingredient 2.

Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Ingredient 3.

Define presentable sets families of such sets of maps that are nicely behaved (that can be algorithmically handled). In our case unions of convex polytopes in $\mathbb{R}^{Q \times Q}$ representing simultaneous asymptotic behaviors.

Step 4.

Compute a presentable equivalent (up to approximation) of I(A*) This is done by induction of the factorisation forest height [Simon].

Program analysis and the size-change abstraction

Program analysis

Given an input program/piece of program:

- Does it perform a zero division?
- Does it access a non-allocated memory area?
- Is there a dynamic type problem?
- Does it comply to the specification?
- Is there a memory leakage?
- Does it terminate?
- What is its running time?

Program analysis

Given an input program/piece of program:

- Does it perform a zero division?
- Does it access a non-allocated memory area?
- Is there a dynamic type problem?
- Does it comply to the specification?
- Is there a memory leakage?
- Does it terminate?
- What is its running time?

[Rice-like] Essentially, all these questions are undecidable.

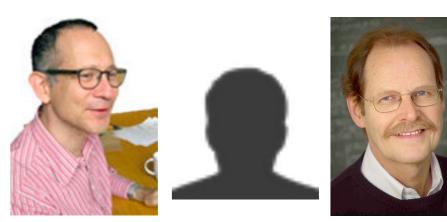
Program analysis

Given an input program/piece of program:

- Does it perform a zero division?
- Does it access a non-allocated memory area?
- Is there a dynamic type problem?
- Does it comply to the specification?
- Is there a memory leakage?
- Does it terminate?
- What is its running time?

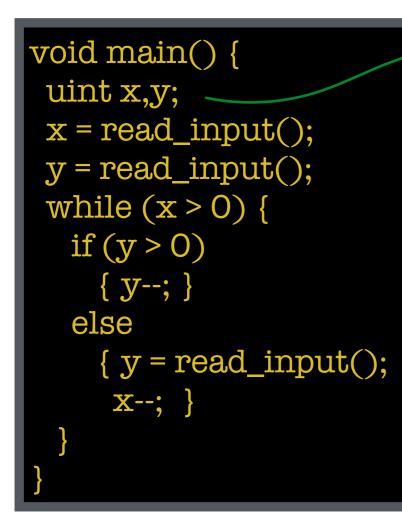
[Rice-like] Essentially, all these questions are undecidable.

Solution here: in this talk, we use the size-change abstract model ([Ben-Amram, Chin Soon Lee, Neil D. Jones 01]).

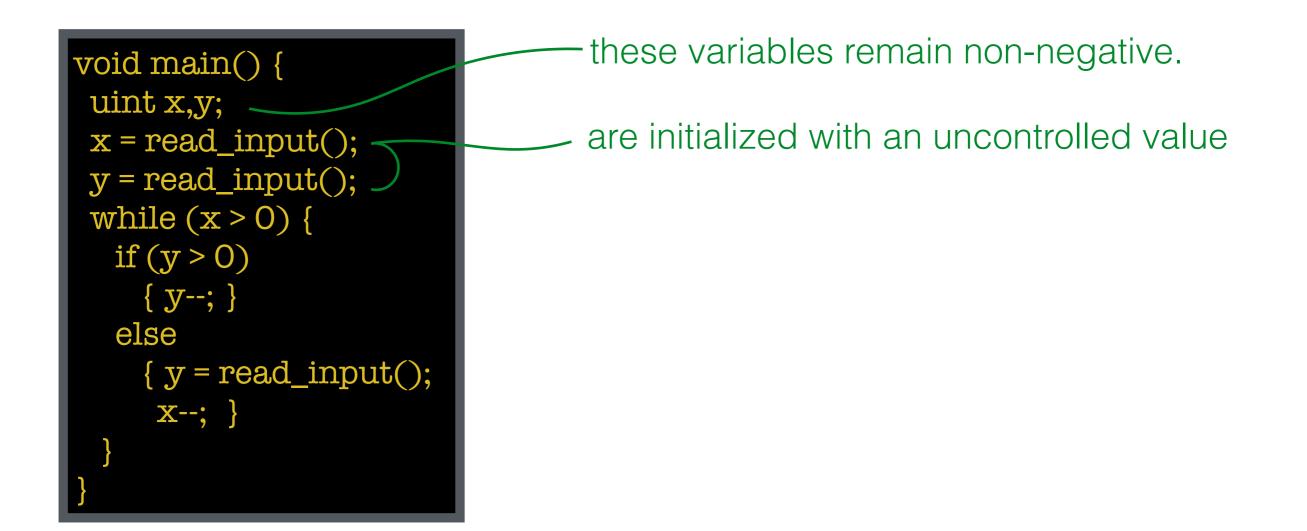


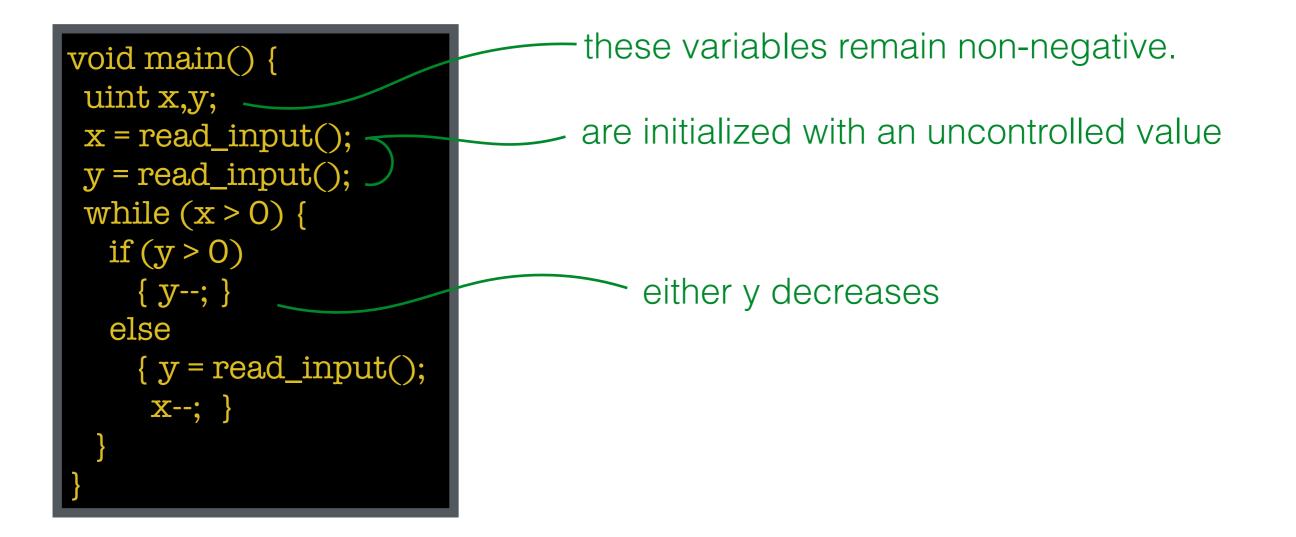
Example

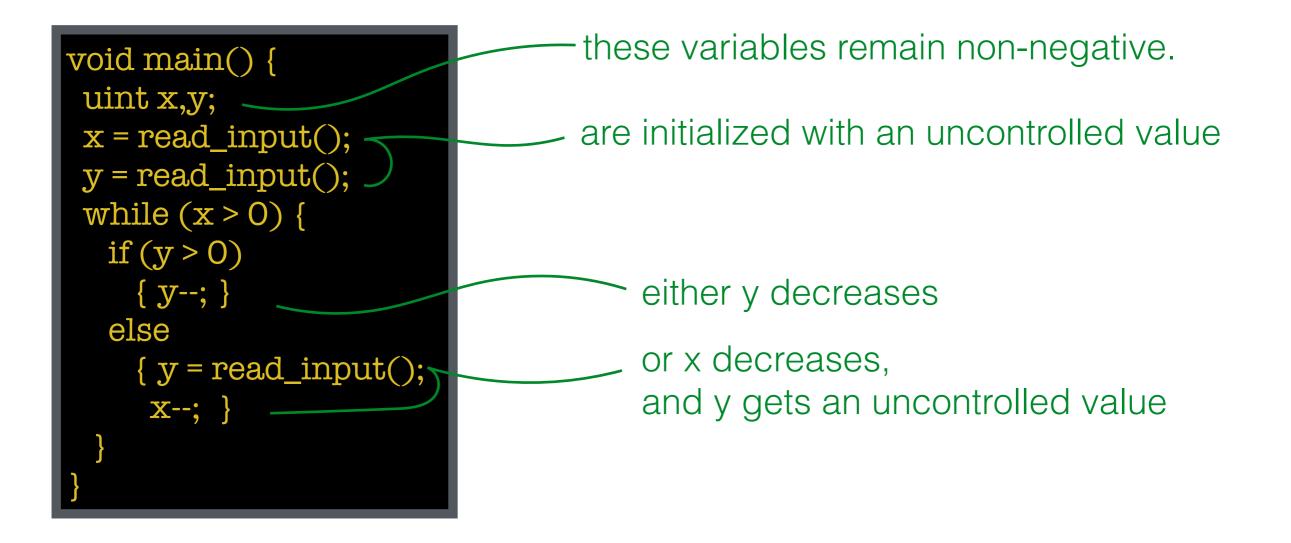
Example

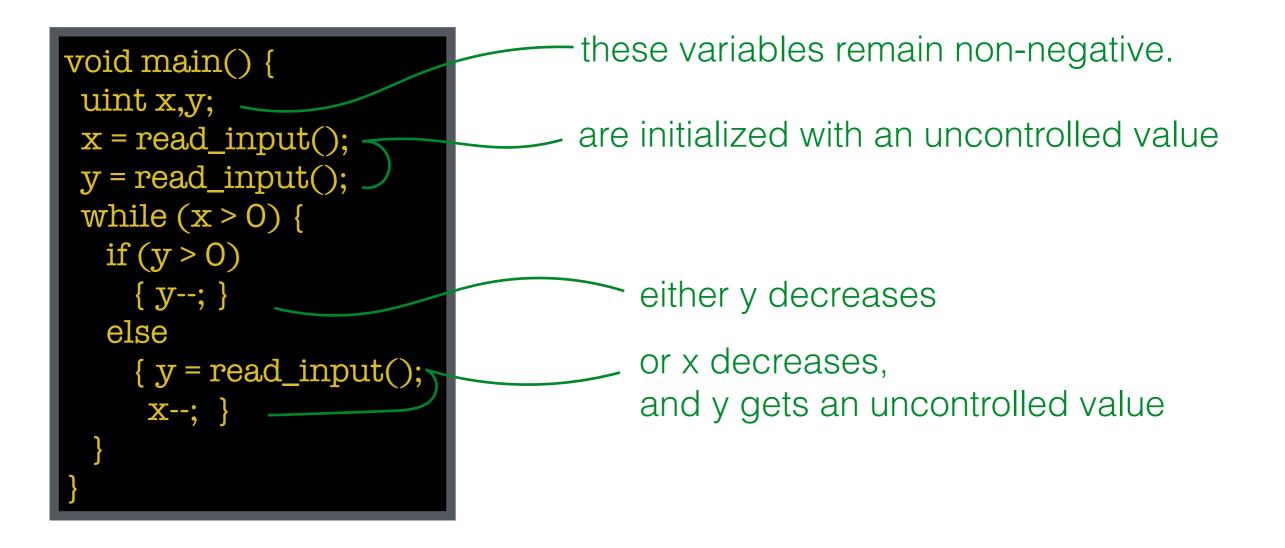


these variables remain non-negative.

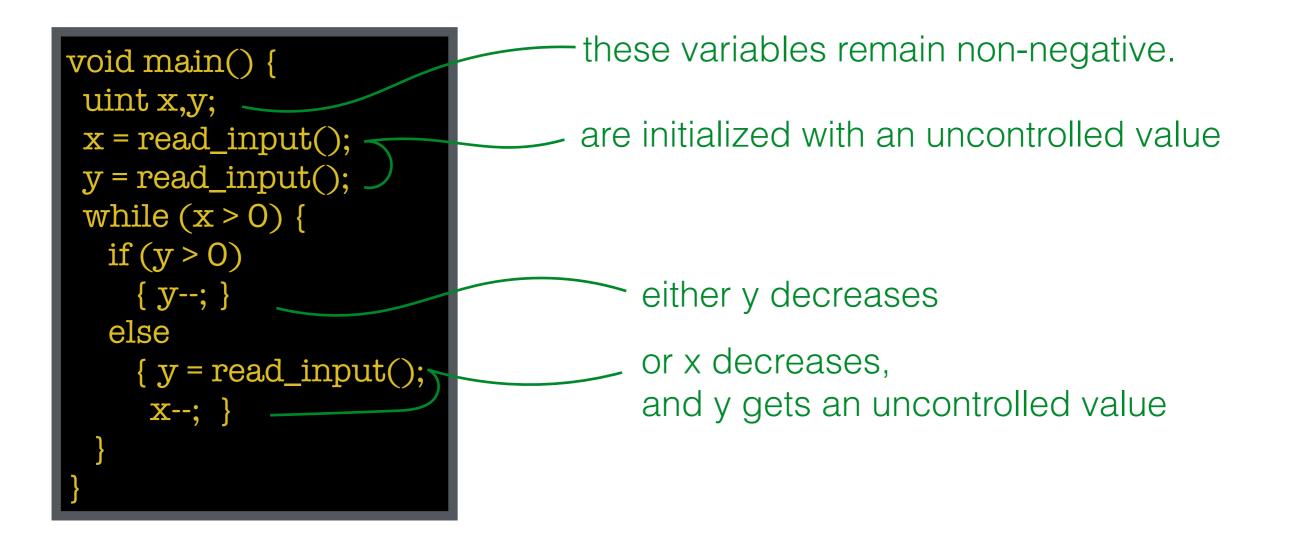








Remark: This program terminates.



Remark: This program terminates.

Question: what method can automatically establish it?

Principle: replace the program by an abstraction:

- Information that is lost is replaced by non-determinism. This includes:
 - + The dynamic information resulting from the interactions with the environment.
 - + All the tests and computations that cannot be abstracted in the restricted model of the abstraction.
- The resulting abstraction can be analyzed: it can be decided whether the resulting abstraction stops an all its executions.
- If the abstraction stops on all its executions, then the original programs stops an all its executions.

Principle: replace the program by an abstraction:

- Information that is lost is replaced by non-determinism. This includes:

+ The dynamic information resulting from the interactions with the environment.

- + All the tests and computations that cannot be abstracted in the restricted model of the abstraction.
- The resulting abstraction can be analyzed: it can be decided whether the resulting abstraction stops an all its executions.
- If the abstraction stops on all its executions, then the original programs stops an all its executions.

Remark: Of course, this is a compromise between the efficiency of the decision problem, and the loss of information during the abstraction.

Principle: replace the program by an abstraction:

- Information that is lost is replaced by non-determinism. This includes:

+ The dynamic information resulting from the interactions with the environment.

- + All the tests and computations that cannot be abstracted in the restricted model of the abstraction.
- The resulting abstraction can be analyzed: it can be decided whether the resulting abstraction stops an all its executions.
- If the abstraction stops on all its executions, then the original programs stops an all its executions.

Remark: Of course, this is a compromise between the efficiency of the decision problem, and the loss of information during the abstraction.

 \Rightarrow In this talk, we use the model of size-change abstraction.

[Ben-Amram et al. 01] A size-change abstraction (SCA):

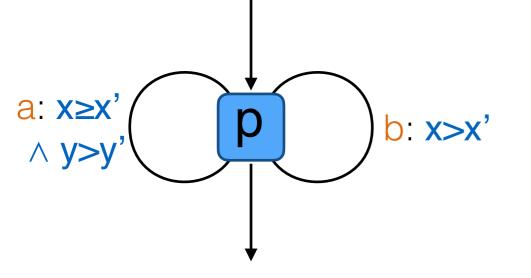
- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »

[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:
 - $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »
 - x > y' meaning « val of x before the transition > val of y after the transition »

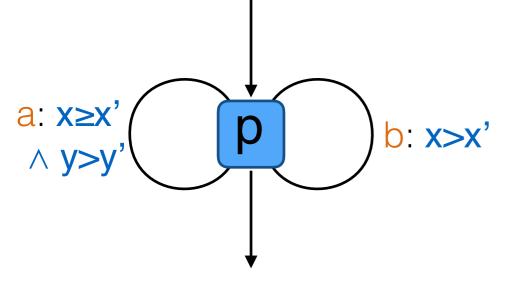


[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »



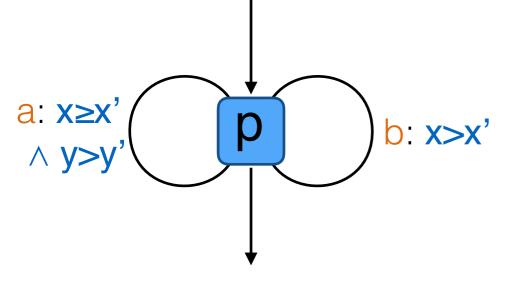
A configuration is a state together with a <u>non-</u> <u>negative integer</u> value for each of the variables.

[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »



A configuration is a state together with a <u>non-</u> <u>negative integer</u> value for each of the variables.

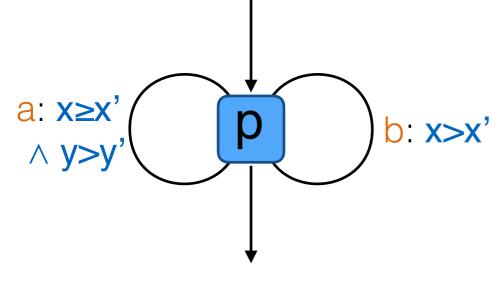
A run of the SCA is a sequence of configurations that starts in an initial configuration, ends in a final one, and each consecutive configurations satisfy the guard of some possible transition.

[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »



A configuration is a state together with a <u>non-</u> <u>negative integer</u> value for each of the variables.

b: x>x' A run of the SCA is a sequence of configurations that starts in an initial configuration, ends in a final one, and each consecutive configurations satisfy the guard of some possible transition.

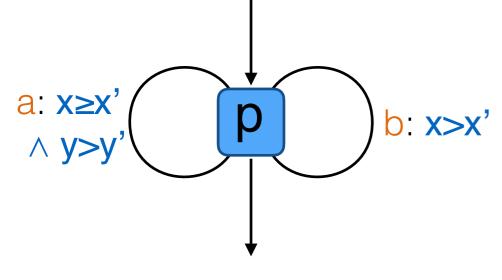
(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »



A configuration is a state together with a <u>non-</u> <u>negative integer</u> value for each of the variables.

b: x>x' A run of the SCA is a sequence of configurations that starts in an initial configuration, ends in a final one, and each consecutive configurations satisfy the guard of some possible transition.

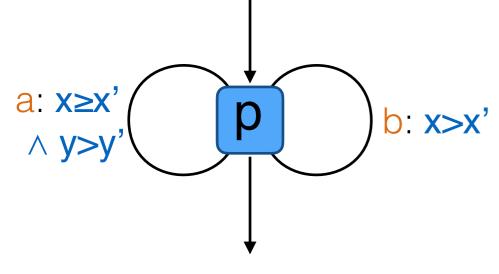
(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »



A configuration is a state together with a <u>non-</u> <u>negative integer</u> value for each of the variables.

b: x>x' A run of the SCA is a sequence of configurations that starts in an initial configuration, ends in a final one, and each consecutive configurations satisfy the guard of some possible transition.

(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

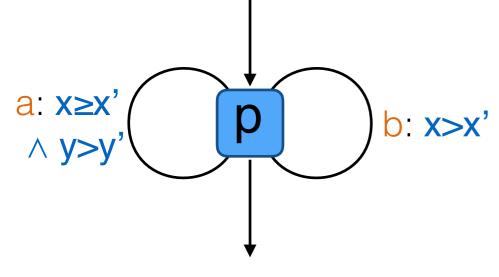
A size-change abstraction terminates if it has no infinite run.

[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine
- that uses a finite set variables (x,y,z...) ranging over non-negative integers
- during each transition, a guards relate the variables before and after:

 $x \ge y'$ meaning « val of x before the transition \ge val of y after the transition »

x > y' meaning « val of x before the transition > val of y after the transition »



A configuration is a state together with a <u>non-</u> <u>negative integer</u> value for each of the variables.

b: x>x' A run of the SCA is a sequence of configurations that starts in an initial configuration, ends in a final one, and each consecutive configurations satisfy the guard of some possible transition.

(p,2,2) (p,2,1) (p,2,0) (p,1,2) (p,1,1) (p,0,2) (p,0,1) (p,0,0)

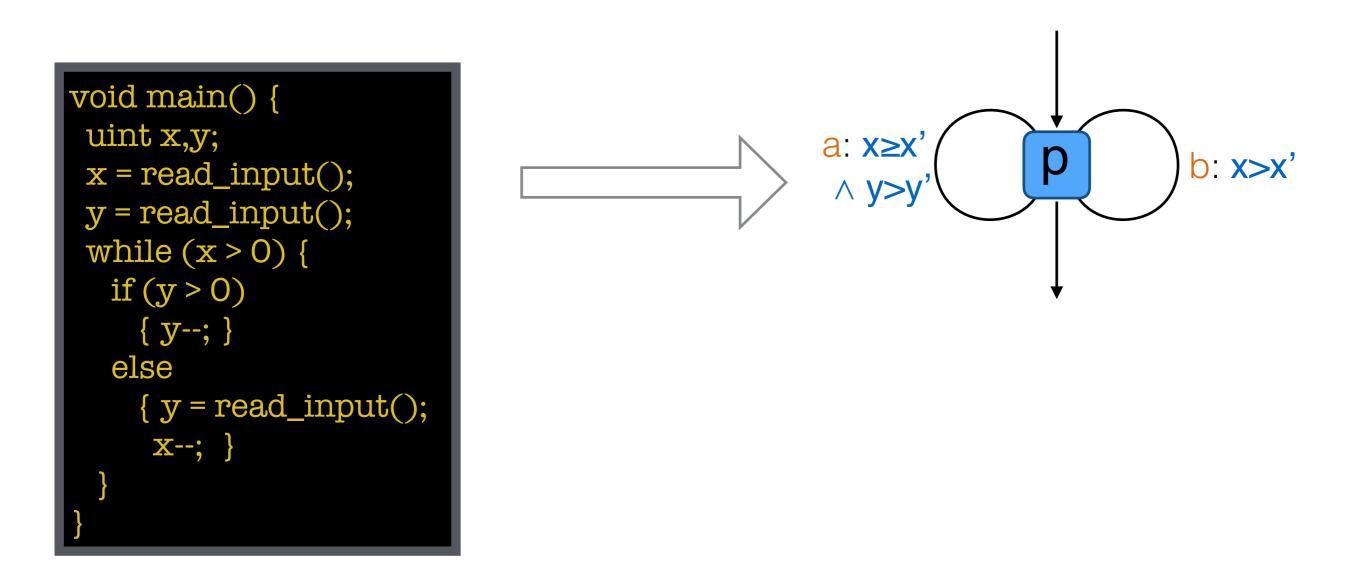
A size-change abstraction terminates if it has no infinite run. [Ben-Aram et al. 01] Termination of size-change abstraction is PSPACE.

Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

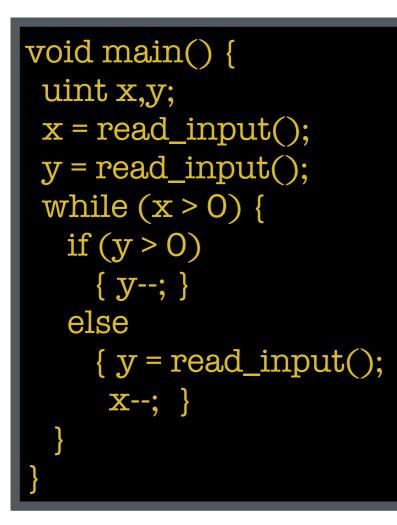
Abstracting

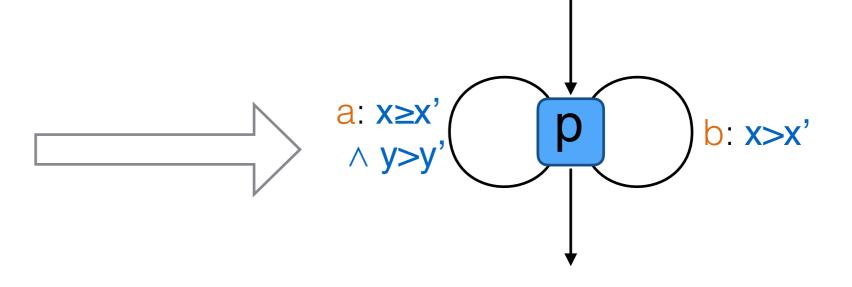
- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer



Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

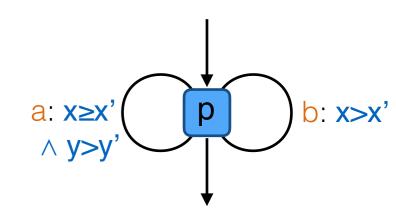




Remark: every run of the original program induces a run of the SCA of game size. Hence if the SCA terminates, the original program also does (on all its executions).

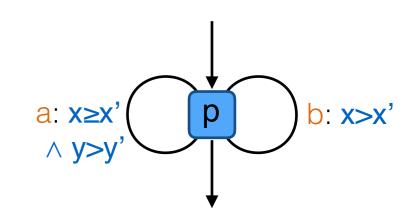
[Ben-Amram et al. 01]: The termination of SCA is decidable.

[Ben-Amram et al. 01]: The termination of SCA is decidable.



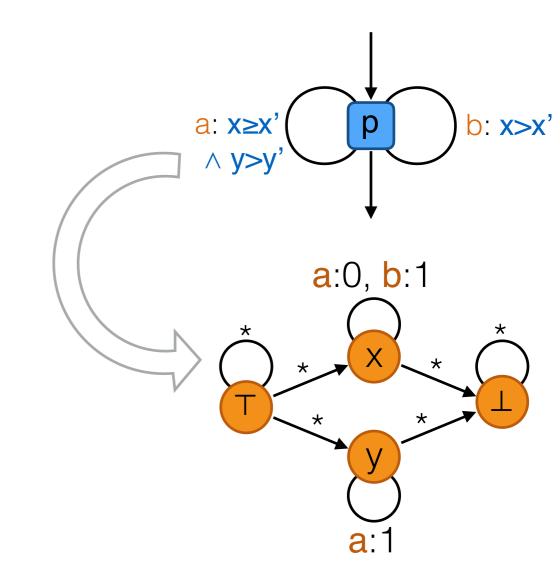
[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.



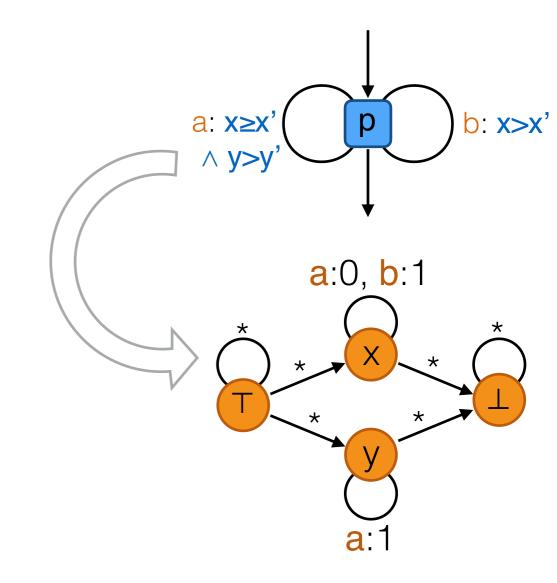
[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows.



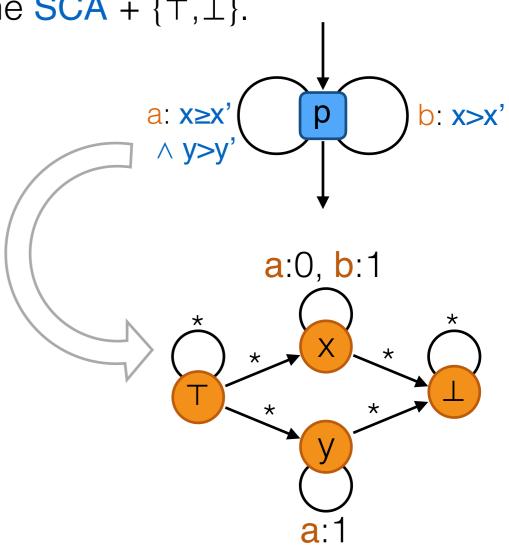
[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a **Büchi automaton Aut** as follows. Take as alphabet the transitions of the **SCA**.



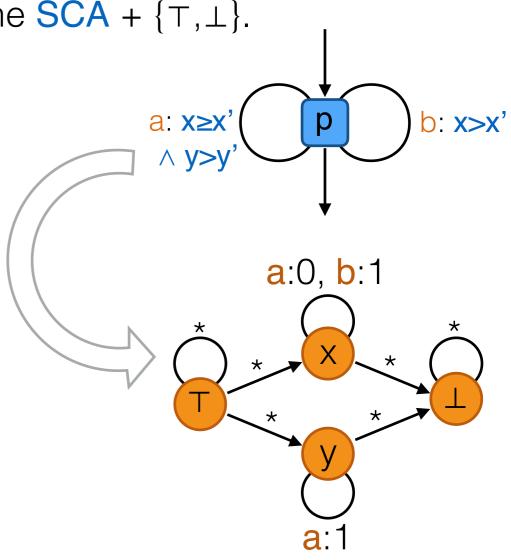
[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$.



[Ben-Amram et al. 01]: The termination of SCA is decidable.

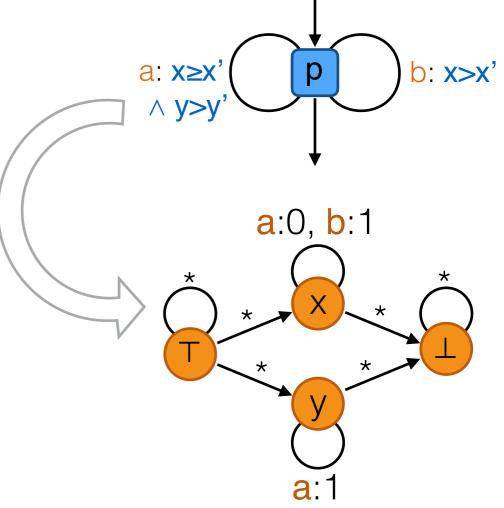
Proof: We construct a **Büchi automaton Aut** as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial.



[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial.

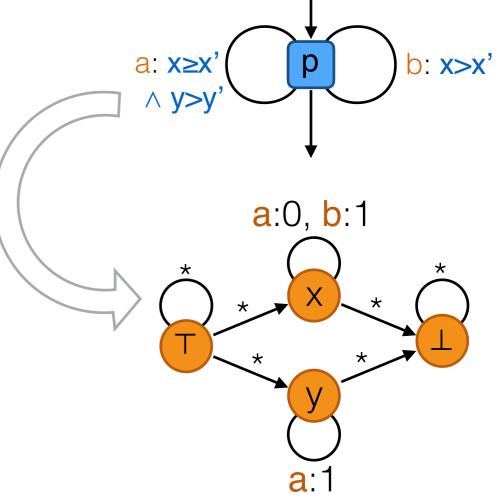
 $\Delta(x,a,y) = \begin{cases} 0 & \text{if there is a guard } x \ge y' \text{ in } a \\ 1 & \text{if there is a guard } x > y' \text{ in } a \\ -\infty & \text{otherwise (no guard)} \end{cases}$



[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \\ (\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0) \end{cases}$



b: x>x'

a: x≥x

a:0, b:1

[Ben-Amram et al. 01]: The termination of SCA is decidable.

Proof: We construct a Büchi automaton Aut as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \\ (\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0) \end{cases}$

Claim: ∃ run ρ of SCA

I input word u for **Aut** of same length such that

- 1) it is a value-free valid run (regular)
- there is no run of Aut with infinitely many 1's (Büchi condition)

[Ben-Amram et al. 01]: The termination of SCA is decidable.

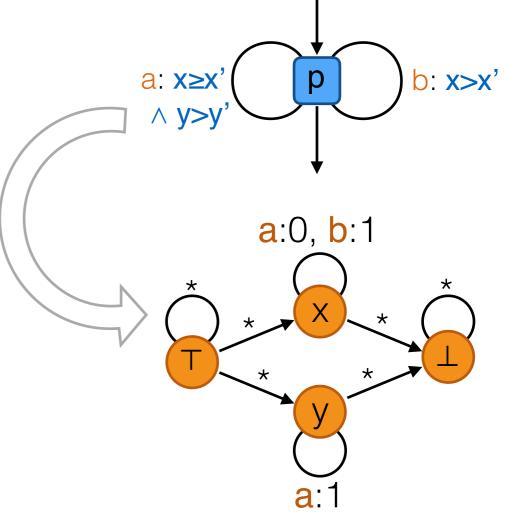
Proof: We construct a Büchi automaton Aut as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \\ (\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0) \end{cases}$

Claim: \exists run ρ of SCA

I input word u for Aut of same length such that

- 1) it is a value-free valid run (regular)
- 2) there is no run of Aut with infinitely many 1's (Büchi condition)
 ⇒ Runs/Aut=Ø ?



[Ben-Amram et al. 01]: The termination of SCA is decidable.

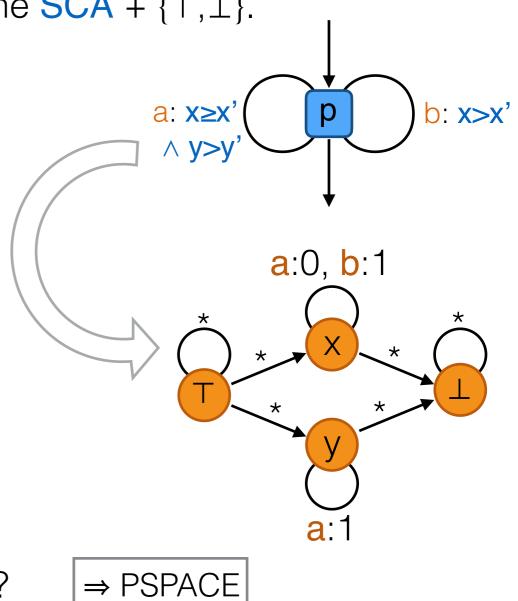
Proof: We construct a Büchi automaton Aut as follows. Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \\ (\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0) \end{cases}$

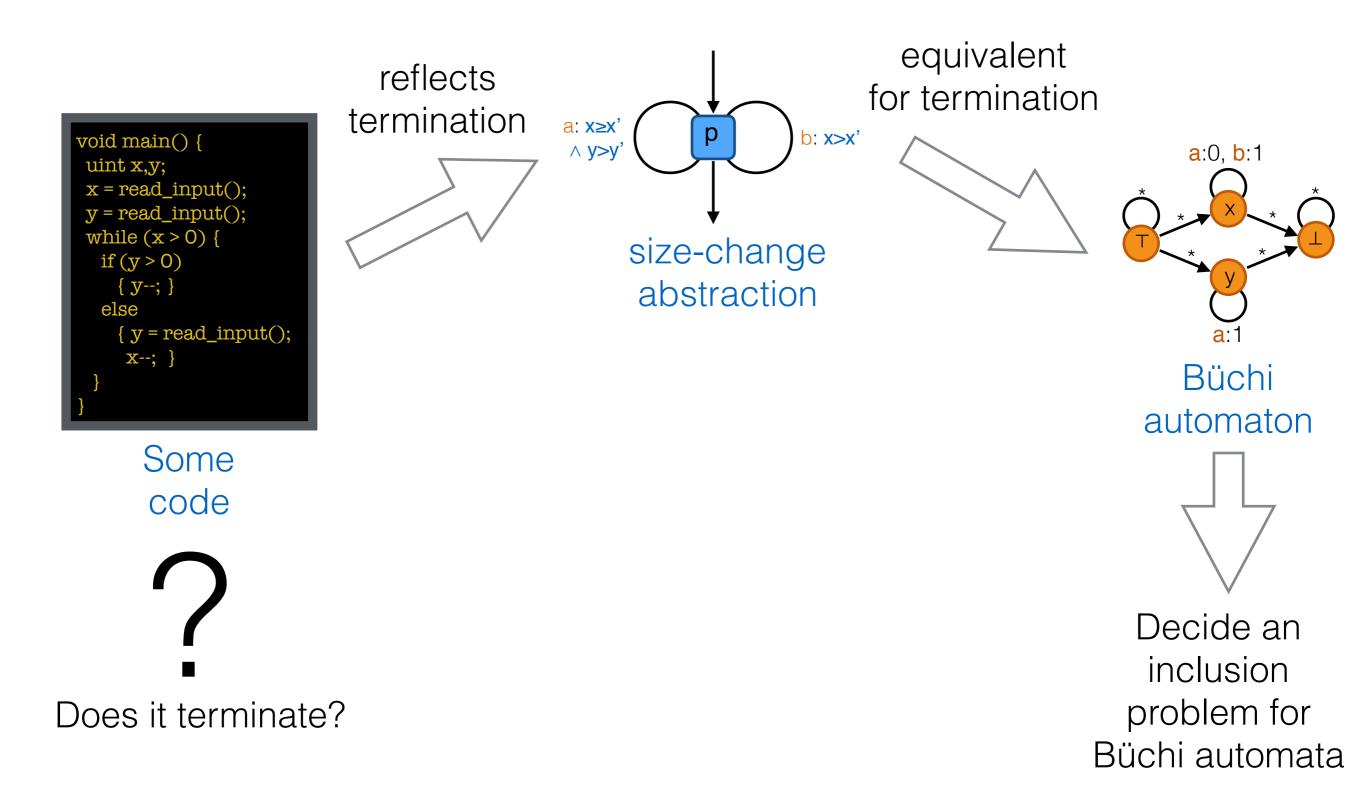
Claim: ∃ run ρ of SCA

I input word u for **Aut** of same length such that

- 1) it is a value-free valid run (regular)
- 2) there is no run of Aut with infinitely many 1's (Büchi condition)
 ⇒ Runs/Aut=Ø ?

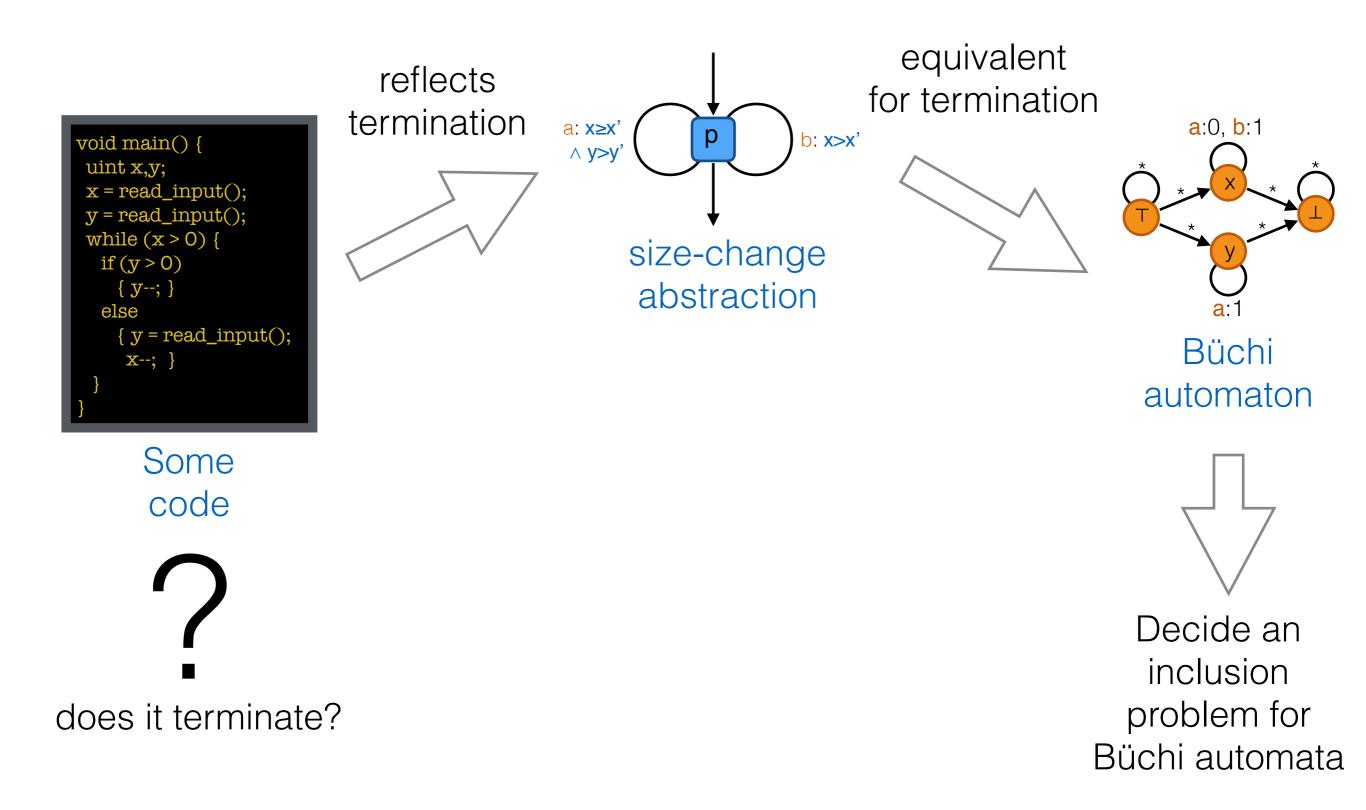


Overall picture

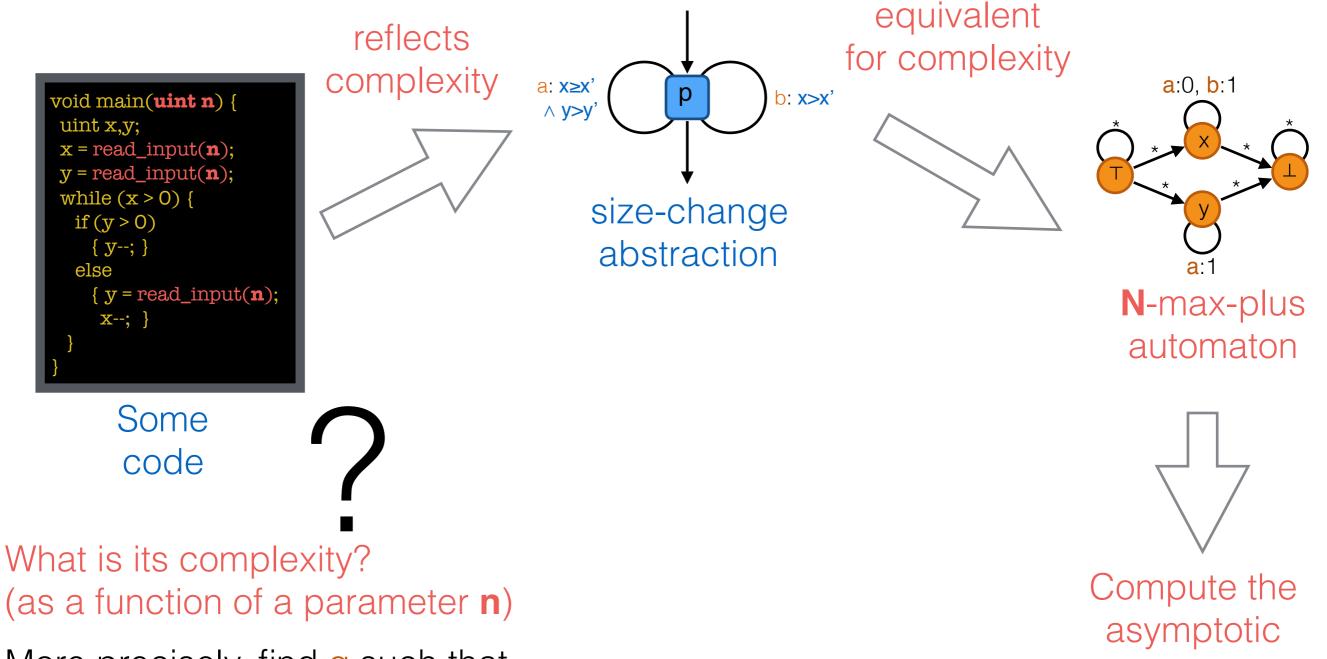


Finer program analysis

Termiation



Asymptotic complexity



More precisely, find α such that the program stops in $\Theta(n^{\alpha})$.

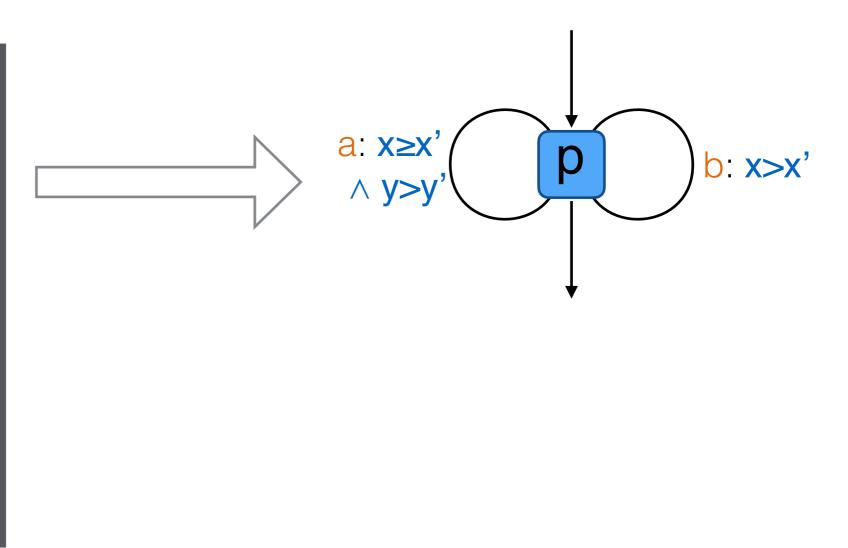
asymptotic worst-case behavior

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

```
void main(uint n) {
    uint x,y;
    x = read_input(n);
    y = read_input(n);
    while (x > 0) {
        if (y > 0)
            { y--; }
        else
            { y = read_input(n);
            x--; }
    }
}
```

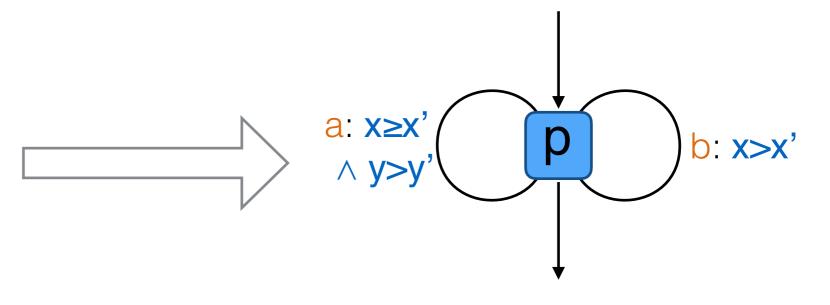
- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

```
void main(uint n) {
    uint x,y;
    x = read_input(n);
    y = read_input(n);
    while (x > 0) {
        if (y > 0)
            { y--; }
        else
            { y = read_input(n);
            x--; }
    }
}
```



- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

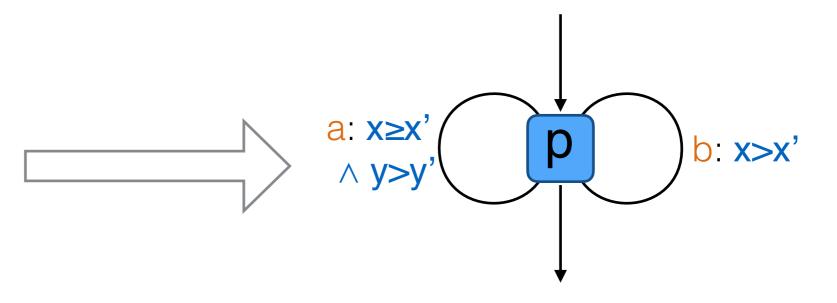
```
void main(uint n) {
    uint x,y;
    x = read_input(n);
    y = read_input(n);
    while (x > 0) {
        if (y > 0)
            { y--; }
        else
            { y = read_input(n);
            x--; }
    }
}
```



An n-run of the SCA is a run in which all the variables take their values in [1,n]

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

```
void main(uint n) {
    uint x,y;
    x = read_input(n);
    y = read_input(n);
    while (x > 0) {
        if (y > 0)
            { y--; }
        else
            { y = read_input(n);
            x--; }
    }
}
```

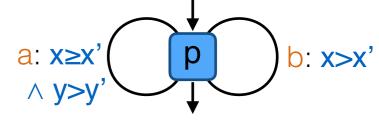


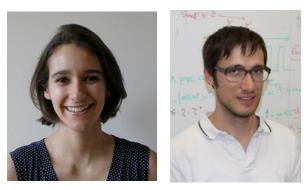
An n-run of the SCA is a run in which all the variables take their values in [1,n]

Remark: every run of the original program for a given n induces an n-run of the SCA of same length. Hence if the SCA terminates in time t for a given n, the original program also does (on all its executions).



[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.



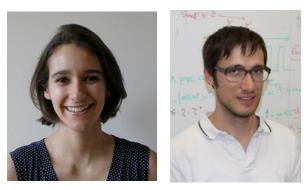


[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.

Proof: We construct a Büchi automaton Aut as follows: Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial and final.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \end{cases}$ $(\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0)$

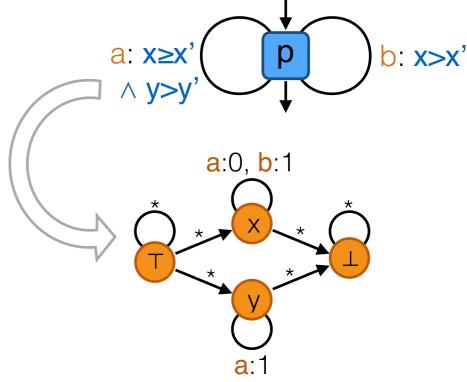
a: x≥x' ∧ y>y' ↓ b: x>x'

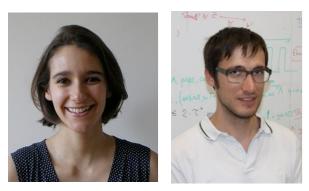


[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.

Proof: We construct a Büchi automaton Aut as follows: Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial and final.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \end{cases}$ $(\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0)$





a: x≥x

a:0, b:1

b: x>x'

[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.

Proof: We construct a Büchi automaton Aut as follows: Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial and final.

 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \end{cases}$ $(\Delta(\perp,?,?)=0, \ \Delta(?,?,\top)=0)$

Claim: (I n-run of SCA of size s) if and only if (I input word u of size s such that 1) it is a value-free valid run (regular) 2) there is no run of Aut with weight >n.

b: x>x'

[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.

Proof: We construct a Büchi automaton Aut as follows: Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + { \top, \bot }. All states of the automaton are initial and final. $\Delta(\mathbf{x}, \mathbf{a}, \mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \end{cases}$ $(\Delta(\bot,?,?)=0, \Delta(?,?,\top)=0)$ Claim: (\exists n-run of SCA of size s) if and only if $\begin{pmatrix} \exists \text{ input word } \mathbf{u} \text{ of size } \mathbf{s} \text{ such that} \\ 1 & \text{it is a value-free valid run (regular)} \\ 2 & \text{there is no run of Aut with weight >n.} \end{pmatrix}$

[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.

Proof: We construct a Büchi automaton Aut as follows: Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + { τ, \perp }. All states of the automaton are initial and final. $\Delta(\mathbf{x}, \mathbf{a}, \mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \\ (\Delta(\perp,?,?)=0, \Delta(?,?,T)=0) \end{cases}$ Claim: (\exists n-run of SCA of size s) if and only if $\begin{pmatrix} \exists \text{ input word u of size s such that} \\ -1) & \text{it is a value-free valid run (regular)} \\ 2) & \text{there is no run of Aut with weight >n.} \end{pmatrix}$

One needs to find the asymptotic exponent of the size of the longest word that is has only run of value at most n:

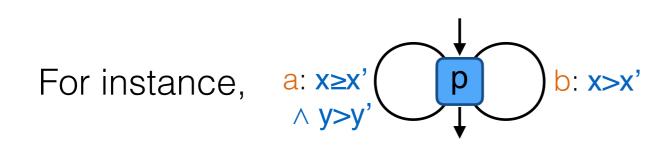
$$\limsup_{u \in A^*} \frac{\log |u|}{\log \operatorname{Aut}(|u|)} = \alpha$$

[C., Daviaud, Zuleger 14] If the SCA terminates, there exists a computable rational α such that the worst-case length of an n-run of the SCA has size $\Theta(n^{\alpha})$.

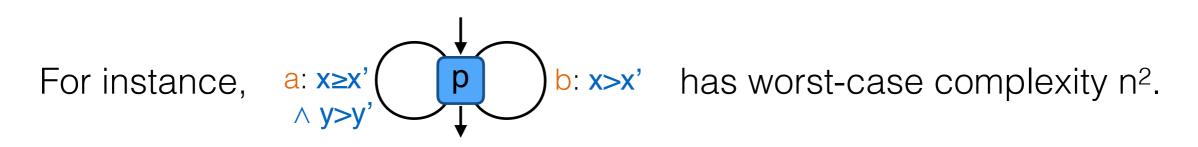
Proof: We construct a Büchi automaton Aut as follows: b: x>x' a: x≥x Take as alphabet the transitions of the SCA. Take as states of the automaton, the variables of the SCA + $\{\top, \bot\}$. All states of the automaton are initial and final. a:0, b:1 $\Delta(\mathbf{x},\mathbf{a},\mathbf{y}) = \begin{cases} 0 & \text{if there is a guard } \mathbf{x} \ge \mathbf{y}' \text{ in a} \\ 1 & \text{if there is a guard } \mathbf{x} > \mathbf{y}' \text{ in a} \\ -\infty & \text{otherwise (no guard)} \end{cases}$ $(\Delta(\perp,?,?)=0, \Delta(?,?,\top)=0)$ Claim: (I n-run of SCA of size s) if and only if $\begin{pmatrix} \exists input word u \text{ of size } s \text{ such that} \\ 1 \end{pmatrix}$ it is a value-free valid run (regular) 2) there is no run of Aut with weight >n.

One needs to find the asymptotic exponent of the size of the longest word that is has only run of value at most n:

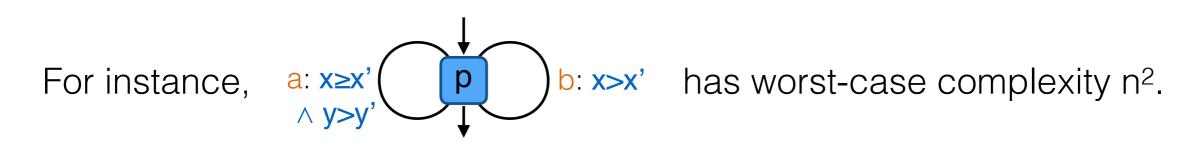
$$\limsup_{u \in A^*} \frac{\log |u|}{\log \operatorname{Aut}(|u|)} = \alpha$$



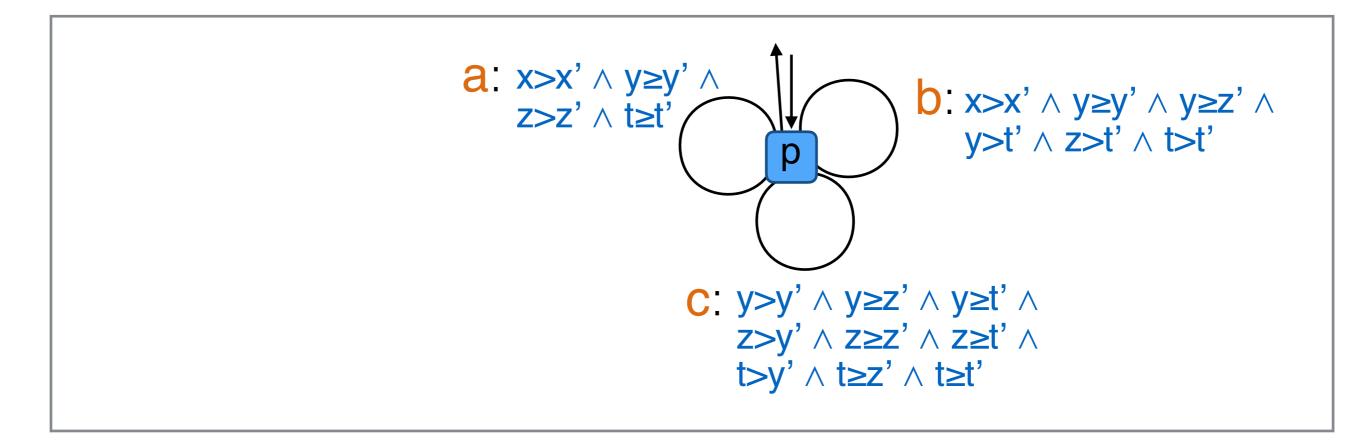
) b: x>x' has worst-case complexity n².

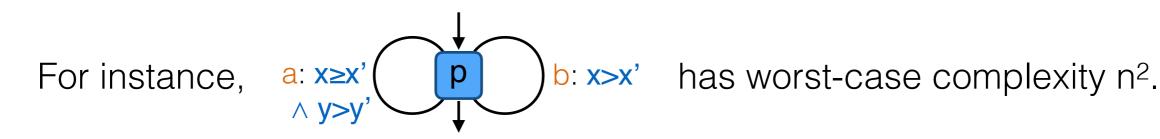


It was conjectured that the asymptotic worst-case could only have integer exponent.

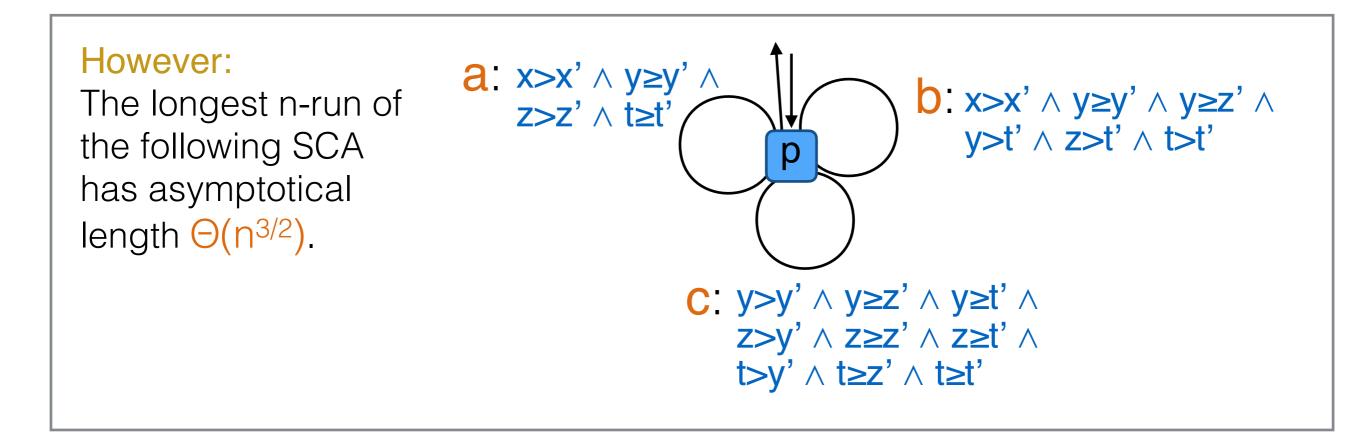


It was conjectured that the asymptotic worst-case could only have integer exponent.



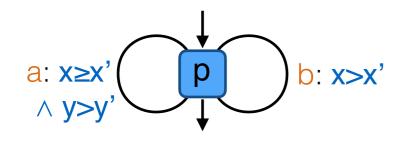


It was conjectured that the asymptotic worst-case could only have integer exponent.



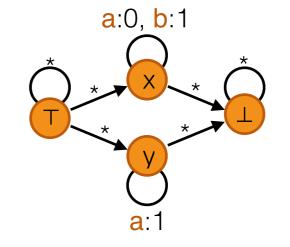
Summary

The size-change abstraction is good model for proving the termination of some forms of programs. This offers a natural reduction to question of automata theory.



We have shown that this technique can be greatly refined for computing asymptotic worst-case complexity of some programs.

This relies on advanced results on the asymptotic analysis of tropical automata.

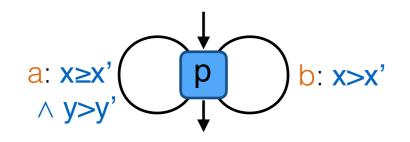


d main(**uint n**`

 $y = read_input(\mathbf{n})$

Summary

The size-change abstraction is good model for proving the termination of some forms of programs. This offers a natural reduction to question of automata theory.

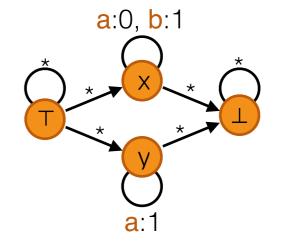


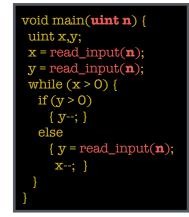
We have shown that this technique can be greatly refined for computing asymptotic worst-case complexity of some programs.

This relies on advanced results on the asymptotic analysis of tropical automata.

Some open questions

What is the exact complexity? How to construct ranking functions? Is there a more general model of automata and results?





Thanks !