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N
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A semiring (S,®,®,0,1) is such that:
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O®a=ax®0=_0



Example of weighted automata

A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: ~ addition

(@a@b)dc=ad(bPc);0pa=aP0=a;a®b=bPa
- (R, @) is a monoid with identity element 1:

(a®b)-c = a®(b®c) ; 1®a=a®1 =a
- Multiplication left and right distributes over addition:

a®(b @ c) = (a®b) ® (a®c) ; (a @ b)®c = (a®c) & (b&c)
- Multiplication by 0 annihilates S:

O®a=ax®0=_0



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(@ob)Dc=ad(bdc);0Pa=adl=a;adb=bDa Gives rise to

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®1 =a valued matrices

- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) ® (a®c) ; (a @ b)®c = (a®kc) P (b&c) monoid.

- Multiplication by 0 annihilates S:
O®a=axkX0=_0



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) @ (a®c) ; (a @ b)®c = (a®c) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n

I_(a]_az...an) = @ ( ® A q| 1,di,J ) X F(qn)

po,...,p |:1



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) ® (a®c) ; (a @ b)®c = (a®kc) P (b&c) monoid.
- Multiplication by 0 annihilates S:
O®Xa=axk0=0
N
L(a;a,...an) = p@p ( |§<>1 A(Qi-1,ai,0 ) ® F(an)
Oy =

Boolean semiring: ({0,1},v,A,0,1)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) ® (a®c) ; (a @ b)®c = (a®kc) P (b&c) monoid.
- Multiplication by 0 annihilates S:
O®Xa=axk0=0
N
L(a;a,...an) = p@p ( |§<>1 A(Qi-1,ai,0 ) ® F(an)
Oy =

Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€})



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers



Example of weighted automata

A semiring (S,®,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(@@b)dc=ad(bPc);0Pa=adl0=a;a®b=bda Gives rise to

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) ® (a®C) ; (a @ b)®c = (a®c) @ (b&C) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L(a;a,...an) = @ ( ® A(Qi-1,ai,9 ) ® F(gn)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers

Tropical semiring: (Ru{-},max,+,-«,0)
(Ru{+co},min,+,+o0,0), (Nu{-o}, max,+,-0,0), (Nu{+o0}, min,+,+c0,0)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers

Tropical semiring: (Ru{-},max,+,-«,0) Tropical automata
(Ru{+co},min,+,+o0,0), (Nu{-o}, max,+,-0,0), (Nu{+o0}, min,+,+c0,0)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(@ob)Dc=ad(bdc);0Pa=adl=a;adb=bDa Gives rise to

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers

Tropical semiring: (Ru{-},max,+,-«,0) Tropical automata
(Ru{+co},min,+,+o0,0), (Nu{-o}, max,+,-0,0), (Nu{+o0}, min,+,+c0,0)




Tropical automata



Tropical automata

L(a;1a2...an) = p@p 1(0o) ® ( I@ A(Qgi-1,ai,q;) ) &® F(an)
(IRERE N =



Tropical automata

N
(arar..a) = P |<qo>®(@A<qi-1,ai,qi>)®p<qn>

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n



Tropical automata

N
(arar..a) = P |<qo>®(@A<qi-1,ai,qi>)®p<qn>

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n



Tropical automata

N
(arar..a) = P |(qo)®(@A(qi-uai,qi))@)F(qn)

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

a,b:0 a:1l a,b:0

Reoeie



Tropical automata

N
L(a;1a2...an) = p@p 1(0o) ® ( I@? A(gi-1,ai,9;) ) &® F(an)
O+ n —

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-co/+oo) a,b:0 a:l a,b:0

are not displayead O
(neutral for ® and absorbing for ®) L%u’ 20, @i’



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

Po,..., Pn

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)

The max-plus automaton computes:



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

Po,..., Pn

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)

The max-plus automaton computes:

La: A* — Nuf-co

u



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

Po,..., Pn

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-eo/+o) a,b:0 @ 1 a,b: 0
are not displayead 5
(neutral for ® and absorbing for ®)

The max-plus automaton computes:

La: A* — Nu{-oo}
u +— the size of the
longest block of

consecutive a’s
surrounded by 2 b’s



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

pO """ pﬂ

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)
The equality of max-plus
definable functions is undecidable.  he max-plus automaton computes:
La: A" — Nuf-oo}
U +—— the size of the
longest block of

consecutive a’s
surrounded by 2 b’s



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(qw,aaqi))@F(qn)

pO """ pﬂ

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)
The equality of max-plus
definable functions is undecidable.  he max-plus automaton computes:
La: A" — Nuf-oo}
U +—— the size of the
longest block of

consecutive a’s
surrounded by 2 b’s

The boundedness of
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Given a (Nu{®},max,+) automaton, find the least 8<[0,1] such that
(3 a) (v seN) (3 word w, lwl=s) (v run p over w) weight(p) < as®

This O exists and is rational.
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

result °s
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length of the word

log f(u) . log |ul 1

Compute:  liminf — 60 <=—"> limsup = —
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find the least value of a word find the longest size of a word

of length at least s of value at most n
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Ingredients of the proof

Given a set of words W, collect an information (W)
sufficient for understanding its behavior in any context.

e.g. for universality (W) = {PcQ : P=Reach(l,u) for some ueW}

In our case,
(W) = { f:QxQ—N : there is a run that displays this behavior } € P(N&*Q)

Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Define presentable sets families of such sets of maps that are nicely behaved
(that can be algorithmically handled). In our case unions of convex polytopes
N RO9xQ representing simultaneous asymptotic behaviors.

Compute a presentable equivalent (up to approximation) of I(A*)
This is done by induction of the factorisation forest height
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Example

void main() { these variables remain non-negative.
uint x,y;
x = read_input(); are initialized with an uncontrolled value
y = read_input();
while (x> 0) {
if (y > 0)

{ -5} either y decreases
else

{ v = read_inputQ):; - __ Or x decreases,
X--; ) and y gets an uncontrolled value

Remark: This program terminates.
Question: what method can automatically establish it 7
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[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine

- that uses a finite set variables (x,y,z...) ranging over non-negative integers

- during each transition, a guards relate the variables before and after:
X =y’ meaning « val of x before the transition = val of y after the transition »
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Ben-Aram et al. 01] Termination of size-change abstraction is PSPACE.
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Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main() {
uint x,y;
X =read_input();
y = read_input();
while (x> 0) {
if (y >0)

{ Y- ]
else
{ y =read_input();
X5}

Remark: every run of the original program
induces a run of the SCA of game size.
Hence it the SCA terminates, the original
program also does (on all its executions).
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- The termination of SCA is decidable.

Proof: We construct a Buchi automaton Aut as follows.

Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {T,L1}.

All states of the automaton are initial.
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Deciding the termination
of size-change abstraction

- The termination of SCA is decidable.

Proof: We construct a Buchi automaton Aut as follows.
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Deciding the termination
of size-change abstraction

- The termination of SCA is decidable.

Proof: We construct a Buchi automaton Aut as follows.

Take as alphabet the transitions of the SCA.

Take as states of the automaton, the variables of the SCA + {T,L1}.

All states of the automaton are initial.

O ifthereisaguardx =y’ ina
A(x,a,y) = 1 ifthereisaguardx>vy’ina
-co Otherwise (no guard)

(A(L,?,7)=0, A(?,7,7)=0)
3 run p of SCA

s

3 input word u for Aut of same length such that

1) it is a value-free valid run (regular)
2) there is no run of Aut with infinitely many 1’s

(Buchi condition) = Runs/Aut=g ?

a: XZX’CPD D: x>X
A Y>>y

= PSPACE




void main() {
uint x,y;
x =read_input();
y =read_input();
while (x> 0) {
if(y>0)

{y— ]
else
{ y =read_input();
X }
}
}

Some
code

f?

Does it terminate?

Overall picture

reflects
termination

a: x=x’
A y>Yy’

l equivalent

for termination
Cp 3 b: x>X’

size-change
abstraction

a:i
BUchi
automaton

Decide an
INclusion
problem for
BUchi automata



Finer program
analysis



void main() {
uint x,y;
x =read_input();
y =read_input();
while (x> 0) {

if (y>0)
{y-—-}
else
{ vy =read_input();
X--; )
}
}

Some
code

f?

does it terminate?

Termiation

reflects
termination

a: x=x’
A y>Yy’

l

l

size-change

abstraction

equivalent

for termination
Cp 3 D: Xx>X’ a:OE’ b:1

Buchi
automaton

\V4

Decide an
INclusion
problem for
BUchi automata




Asymptotic complexity

eflects l equivalent
. for complexity
_ , COmpleXI’[y a: x=x’ o a:0, b:1
void main( ) { A Yoy’ P b1 x>x
uint x,y;

X = ; %@ X
) y . x Prad
Wg‘lé;gxo)m { %\/ Slze_Change M \@

(Y= ) '
s apstraction

{y= ;
s ) N-max-plus

} automaton

}

sSome
code
What is its complexity”

(as a function of a parameter n) Compute t.he

asymptotic

worst-case
behavior

More precisely, find a such that
the program stops in ©(n9).



Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) {
uint x,y;
X =read_input(n);
y =read_input(n);
while (x> 0) {
if (y>0)

{y-- }
else

{ y =read_input(n);
X5 )




Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code

- use as guard the best ones you can infer

void main(uint n) {
uint x,y;
X =read_input(n);
y = read_input(n);
while (x> 0) {
if (y>0)

{y-- }
else

{ y =read_input(n);
X5 )




Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) { l

uint x,y; | |
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Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) { l

uint x,y; | |
x = read_input(n); d. XZX, - Yox’
y = read_input(n); N Y>Y

while (x> 0) { l
if (y > 0)

{y-- }
else An of the SCA is a run in which all

{ y = read_input(n); the variables take their values in [1,n]

5 ) Remark: every run of the original
program for a given n induces an n-run of
the SCA of same length. Hence if the
SCA terminates in time t for a given n,

the original program also does (on all its
executions).




€ Complexity analysis

If the SCA terminates, there exists a computable
rational a such that the worst-case length of an n-run of the SCA has size ©(n2).

a: x=x’
AY>Y’

P

Cl

v

D D: Xx>X’
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Take as states of the automaton, the variables of the SCA + {T,1}. ¢
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€ Complexity analysis

If the SCA terminates, there exists a computable
rational a such that the worst-case length of an n-run of the SCA has size ©(n2).

Proof: We construct a Biichi automaton Aut as follows:

Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {T,1}.

All states of the automaton are initial and final.
O ifthereisaguardx=y’ina

A(x,a,y) = { 1 ifthereisaguardx>y’ina
-co otherwise (no guard)

(A(1,2,7)=0, A(?,2,7)=0)

(3 n-run of SCA of size s)
3 input word u of size s such that

if and only it ( 1)-itis-a value-free-valid-run-(regutar)

2) there is no run of Aut with weight >n.

One needs to find the asymptotic

log |u/

exponent of the size of the longest . sup

word that is has only run of value weAx log Aut(|u|)

at most n:

'
a: XZX’CPD b x>X’
AY>Y |
a:0, b:1
e 6}@

a:l
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€ Complexity analysis

If the SCA terminates, there exists a computable
rational a such that the worst-case length of an n-run of the SCA has size ©(n2).

Proof: We construct a BQghi automaton Aut as follows: 2 X=X’ D b XX’
Take as alphabet the transitions of the SCA. A Yy

Take as states of the automaton, the variables of the SCA + {T,1}. ¢

All states of the automaton are initial and final.

a:0, b:1

O ifthereisaguardx=vy’'ina
A(x,a,y) = { 1 ifthereisaguard x>y’ ina x /@ x
-co otherwise (no guard) % \*@
(A(L,?,7)=0, A(?,?,T)=0) 8 P v
(3 n-run of SCA of size s) \@
3 input word u of size s such that |
if and only it 1)-itis-a-value-free-valid-run-(regutar)
2) there is no run of Aut with weight >n.
One needs to find the asymptotic
i log |u
exponent of the size of the longest lim sup glul . ~ Decidable

word that is has only run of value weAx log Aut(|u|)
at most n:
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An unexpected
ohenomenon

For instance, & XZX’CI) o:x>x"  has worst-case complexity n2.
AY>Y Il

It was conjectured that the asymptotic worst-case could only have integer
exponent.

However: a: x>x' A Y=y A
The longest n-run of 257" A tst

the following SCA
has asymptotical

length ©(n2),

D:x>X" A yzy’ A y=z’ A
y>t' A z>t A St

C:y>Y Ay=zZ Ayt A
Z>Y' ANzZ2Z Azt A
>y’ A t=z' At




x =read_input(n);
y =read_input(n);
while (x> 0) {

void main(uint n) {
uint x,y;

if(y>0)

The size-change abstraction is good model for proving the s
termination of some forms of programs. This offers a natural
reduction to question of automata theory.

| We have shown that this technique can be greatly
a: XZX’CP:D o:x>x"  refined for computing asymptotic worst-case
AY>Y v complexity of some programs.
a:0, b:1
This relies on advanced results on the 8/'@\@
asymptotic analysis of tropical automata. \@/’



void main(uint n) {
uint x,y;

x =read_input(n);
y =read_input(n);
while (x> 0) {

if(y>0)

The size-change abstraction is good model for proving the e
termination of some forms of programs. This offers a natural
reduction to question of automata theory.

CLD We have shown that this technique can be greatly
D: x>x’

a: X=X’ P refined for computing asymptotic worst-case
AY>Y v complexity of some programs.
a:0, b:1
This relies on advanced results on the 8/'@\@
asymptotic analysis of tropical automata. \@/’
a:l

Some open questions

What is the exact complexity?
How to construct ranking functions”
|s there a more general model of automata and results?



Thanks !



