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N
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A semiring (S,®,®,0,1) is such that:
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O®a=ax®0=_0



Example of weighted automata

A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: ~ addition

(@a@b)dc=ad(bPc);0pa=aP0=a;a®b=bPa
- (R, @) is a monoid with identity element 1:

(a®b)-c = a®(b®c) ; 1®a=a®1 =a
- Multiplication left and right distributes over addition:

a®(b @ c) = (a®b) ® (a®c) ; (a @ b)®c = (a®c) & (b&c)
- Multiplication by 0 annihilates S:

O®a=ax®0=_0



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(@ob)Dc=ad(bdc);0Pa=adl=a;adb=bDa Gives rise to

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®1 =a valued matrices

- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) ® (a®c) ; (a @ b)®c = (a®kc) P (b&c) monoid.

- Multiplication by 0 annihilates S:
O®a=axkX0=_0



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) @ (a®c) ; (a @ b)®c = (a®c) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n

I_(a]_az...an) = @ ( ® A q| 1,di,J ) X F(qn)

po,...,p |:1



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) ® (a®c) ; (a @ b)®c = (a®kc) P (b&c) monoid.
- Multiplication by 0 annihilates S:
O®Xa=axk0=0
N
L(a;a,...an) = p@p ( |§<>1 A(Qi-1,ai,0 ) ® F(an)
Oy =

Boolean semiring: ({0,1},v,A,0,1)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®kb) ® (a®c) ; (a @ b)®c = (a®kc) P (b&c) monoid.
- Multiplication by 0 annihilates S:
O®Xa=axk0=0
N
L(a;a,...an) = p@p ( |§<>1 A(Qi-1,ai,0 ) ® F(an)
Oy =

Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€})



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers



Example of weighted automata

A semiring (S,®,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(@@b)dc=ad(bPc);0Pa=adl0=a;a®b=bda Gives rise to

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) ® (a®C) ; (a @ b)®c = (a®c) @ (b&C) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L(a;a,...an) = @ ( ® A(Qi-1,ai,9 ) ® F(gn)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers

Tropical semiring: (Ru{-},max,+,-«,0)
(Ru{+co},min,+,+o0,0), (Nu{-o}, max,+,-0,0), (Nu{+o0}, min,+,+c0,0)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(a@a®db)dc=ad(b®c);0da=ad®0=a;a®b=bdDa Gives rise 1o

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers

Tropical semiring: (Ru{-},max,+,-«,0) Tropical automata
(Ru{+co},min,+,+o0,0), (Nu{-o}, max,+,-0,0), (Nu{+o0}, min,+,+c0,0)



Example of weighted automata

/ \
A semiring (S,$,®,0,1) is SUCM multiplication

- (R, @) is a commutative monoid with identity element O: < addition
(@ob)Dc=ad(bdc);0Pa=adl=a;adb=bDa Gives rise to

- (R, @) is a monoid with identity element 1: product of S
(a®b)-c = a®(b®c) ; 1®a =a®l1 =a valued matrices
- Multiplication left and right distributes over addition: that form a
a®(b @ c) = (a®b) @ (a®c) ; (a ® b)®c = (a®kc) @ (b&c) monoid.
- Multiplication by 0 annihilates S:
O®a=axkX0=_0
n
L@sas.a) = D ® () A(gi.a.g) ) ® Flan)
Po,.--,Pn =1
Boolean semiring: ({0,1},v,A,0,1) Non-deterministic automata

Reals/Integers/Rationals/Natural numbers: (R,+,%,0,1) Computes the number of
runs of the NDA

« Rat semiring »: (Rat(A), v, -, @, {€}) Rational transducers

Tropical semiring: (Ru{-},max,+,-«,0) Tropical automata
(Ru{+co},min,+,+o0,0), (Nu{-o}, max,+,-0,0), (Nu{+o0}, min,+,+c0,0)




Tropical automata



Tropical automata

L(a;1a2...an) = p@p 1(0o) ® ( I@ A(Qgi-1,ai,q;) ) &® F(an)
(IRERE N =



Tropical automata

N
(arar..a) = P |<qo>®(@A<qi-1,ai,qi>)®p<qn>

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n



Tropical automata

N
(arar..a) = P |<qo>®(@A<qi-1,ai,qi>)®p<qn>

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n



Tropical automata

N
(arar..a) = P |(qo)®(@A(qi-uai,qi))@)F(qn)

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

a,b:0 a:1l a,b:0

Reoeie



Tropical automata

N
L(a;1a2...an) = p@p 1(0o) ® ( I@? A(gi-1,ai,9;) ) &® F(an)
O+ n —

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-co/+oo) a,b:0 a:l a,b:0

are not displayead O
(neutral for ® and absorbing for ®) L%u’ 20, @i’



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

Po,..., Pn

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)

The max-plus automaton computes:



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

Po,..., Pn

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)

The max-plus automaton computes:

La: A* — Nuf-co

u



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

Po,..., Pn

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-eo/+o) a,b:0 @ 1 a,b: 0
are not displayead 5
(neutral for ® and absorbing for ®)

The max-plus automaton computes:

La: A* — Nu{-oo}
u +— the size of the
longest block of

consecutive a’s
surrounded by 2 b’s



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(q«aaqi))@F(qn)

pO """ pﬂ

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)
The equality of max-plus
definable functions is undecidable.  he max-plus automaton computes:
La: A" — Nuf-oo}
U +—— the size of the
longest block of

consecutive a’s
surrounded by 2 b’s



Tropical automata
L(a1@z...an) = @ I(qo)®(éA(qw,aaqi))@F(qn)

pO """ pﬂ

(Nu{-o0},max,+,-o,0)
L(u)=n  ifandonlyif (3 run p over u) weight(p)=n

(Nu{co},min,+,0,0)
L(u)>n ifandonlyif (v run p over u) weight(p)=n

by convention zero-transitions (-oo/+c0) a,b:0 Cl 1 a,b:0
are not displayead 5
(neutral for ® and absorbing for ®)
The equality of max-plus
definable functions is undecidable.  he max-plus automaton computes:
La: A" — Nuf-oo}
U +—— the size of the
longest block of

consecutive a’s
surrounded by 2 b’s

The boundedness of
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Given a (Nu{®},max,+) automaton, find the least 8<[0,1] such that
(3 a) (v seN) (3 word w, lwl=s) (v run p over w) weight(p) < as®

This O exists and is rational.
Furthermore, it can be constructed in EXPSPACE, likely to be PSPACE-complete.

result °s
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length of the word

log f(u) . log |ul 1

Compute:  liminf — 60 <=—"> limsup = —
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find the least value of a word find the longest size of a word

of length at least s of value at most n
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Ingredients of the proof

Given a set of words W, collect an information (W)
sufficient for understanding its behavior in any context.

e.g. for universality (W) = {PcQ : P=Reach(l,u) for some ueW}

In our case,
(W) = { f:QxQ—N : there is a run that displays this behavior } € P(N&*Q)

Give a notion of approximation for such sets: Hausdorff-like keeping asymptotes.

Define presentable sets families of such sets of maps that are nicely behaved
(that can be algorithmically handled). In our case unions of convex polytopes
N RO9xQ representing simultaneous asymptotic behaviors.

Compute a presentable equivalent (up to approximation) of I(A*)
This is done by induction of the factorisation forest height
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Example

void main() { these variables remain non-negative.
uint x,y;
x = read_input(); are initialized with an uncontrolled value
y = read_input();
while (x> 0) {
if (y > 0)

{ -5} either y decreases
else

{ v = read_inputQ):; - __ Or x decreases,
X--; ) and y gets an uncontrolled value

Remark: This program terminates.
Question: what method can automatically establish it 7



Principle of abstraction



Principle of abstraction

Principle: replace the program by an abstraction:
Information that is lost is replaced by non-determinism.
This includes:

+ The dynamic information resulting from the interactions with the
environment.

+ All the tests and computations that cannot be abstracted in the
restricted model of the abstraction.

- The resulting abstraction can be analyzed: it can be decided whether
the resulting abstraction stops an all its executions.
It the abstraction stops on all its executions, then the original
programs stops an all its executions.



Principle of abstraction

Principle: replace the program by an abstraction:
Information that is lost is replaced by non-determinism.
This includes:

+ The dynamic information resulting from the interactions with the
environment.

+ All the tests and computations that cannot be abstracted in the
restricted model of the abstraction.

- The resulting abstraction can be analyzed: it can be decided whether
the resulting abstraction stops an all its executions.
It the abstraction stops on all its executions, then the original
programs stops an all its executions.

Remark: Of course, this is a compromise between the efficiency of the
decision problem, and the loss of information during the abstraction.



Principle of abstraction

Principle: replace the program by an abstraction:
Information that is lost is replaced by non-determinism.
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+ The dynamic information resulting from the interactions with the
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restricted model of the abstraction.

- The resulting abstraction can be analyzed: it can be decided whether
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= |n this talk, we use the model of size-change abstraction.
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[Ben-Amram et al. 01] A size-change abstraction (SCA):

- this is a non-determininistic finite state machine

- that uses a finite set variables (x,y,z...) ranging over non-negative integers

- during each transition, a guards relate the variables before and after:
X =y’ meaning « val of x before the transition = val of y after the transition »
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Ben-Aram et al. 01] Termination of size-change abstraction is PSPACE.
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Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main() {
uint x,y;
X =read_input();
y = read_input();
while (x> 0) {
if (y >0)

{ Y- ]
else
{ y =read_input();
X5}

Remark: every run of the original program
induces a run of the SCA of game size.
Hence it the SCA terminates, the original
program also does (on all its executions).
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- The termination of SCA is decidable.

Proof: We construct a Buchi automaton Aut as follows.

Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {T,L1}.

All states of the automaton are initial.
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Deciding the termination
of size-change abstraction

- The termination of SCA is decidable.

Proof: We construct a Buchi automaton Aut as follows.
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Deciding the termination
of size-change abstraction

- The termination of SCA is decidable.

Proof: We construct a Buchi automaton Aut as follows.

Take as alphabet the transitions of the SCA.

Take as states of the automaton, the variables of the SCA + {T,L1}.

All states of the automaton are initial.

O ifthereisaguardx =y’ ina
A(x,a,y) = 1 ifthereisaguardx>vy’ina
-co Otherwise (no guard)

(A(L,?,7)=0, A(?,7,7)=0)
3 run p of SCA

s

3 input word u for Aut of same length such that

1) it is a value-free valid run (regular)
2) there is no run of Aut with infinitely many 1’s

(Buchi condition) = Runs/Aut=g ?

a: XZX’CPD D: x>X
A Y>>y

= PSPACE




void main() {
uint x,y;
x =read_input();
y =read_input();
while (x> 0) {
if(y>0)

{y— ]
else
{ y =read_input();
X }
}
}

Some
code

f?

Does it terminate?

Overall picture

reflects
termination

a: x=x’
A y>Yy’

l equivalent

for termination
Cp 3 b: x>X’

size-change
abstraction

a:i
BUchi
automaton

Decide an
INclusion
problem for
BUchi automata



Finer program
analysis



void main() {
uint x,y;
x =read_input();
y =read_input();
while (x> 0) {

if (y>0)
{y-—-}
else
{ vy =read_input();
X--; )
}
}

Some
code

f?

does it terminate?

Termiation

reflects
termination

a: x=x’
A y>Yy’

l

l

size-change

abstraction

equivalent

for termination
Cp 3 D: Xx>X’ a:OE’ b:1

Buchi
automaton

\V4

Decide an
INclusion
problem for
BUchi automata




Asymptotic complexity

eflects l equivalent
. for complexity
_ , COmpleXI’[y a: x=x’ o a:0, b:1
void main( ) { A Yoy’ P b1 x>x
uint x,y;

X = ; %@ X
) y . x Prad
Wg‘lé;gxo)m { %\/ Slze_Change M \@

(Y= ) '
s apstraction

{y= ;
s ) N-max-plus

} automaton

}

sSome
code
What is its complexity”

(as a function of a parameter n) Compute t.he

asymptotic

worst-case
behavior

More precisely, find a such that
the program stops in ©(n9).



Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) {
uint x,y;
X =read_input(n);
y =read_input(n);
while (x> 0) {
if (y>0)

{y-- }
else

{ y =read_input(n);
X5 )
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uint x,y; | |
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Abstracting

- fix quantities to keep track of, here x,y (can be other quantities)
- construct the control flow graph of the code
- use as guard the best ones you can infer

void main(uint n) { l

uint x,y; | |
x = read_input(n); d. XZX, - Yox’
y = read_input(n); N Y>Y

while (x> 0) { l
if (y > 0)

{y-- }
else An of the SCA is a run in which all

{ y = read_input(n); the variables take their values in [1,n]

5 ) Remark: every run of the original
program for a given n induces an n-run of
the SCA of same length. Hence if the
SCA terminates in time t for a given n,

the original program also does (on all its
executions).




€ Complexity analysis

If the SCA terminates, there exists a computable
rational a such that the worst-case length of an n-run of the SCA has size ©(n2).

a: x=x’
AY>Y’

P

Cl

v

D D: Xx>X’
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Take as states of the automaton, the variables of the SCA + {T,1}. ¢
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O ifthereisaguardx=y’ina
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€ Complexity analysis

If the SCA terminates, there exists a computable
rational a such that the worst-case length of an n-run of the SCA has size ©(n2).

Proof: We construct a Biichi automaton Aut as follows:

Take as alphabet the transitions of the SCA.
Take as states of the automaton, the variables of the SCA + {T,1}.

All states of the automaton are initial and final.
O ifthereisaguardx=y’ina

A(x,a,y) = { 1 ifthereisaguardx>y’ina
-co otherwise (no guard)

(A(1,2,7)=0, A(?,2,7)=0)

(3 n-run of SCA of size s)
3 input word u of size s such that

if and only it ( 1)-itis-a value-free-valid-run-(regutar)

2) there is no run of Aut with weight >n.

One needs to find the asymptotic

log |u/

exponent of the size of the longest . sup

word that is has only run of value weAx log Aut(|u|)

at most n:

'
a: XZX’CPD b x>X’
AY>Y |
a:0, b:1
e 6}@

a:l
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€ Complexity analysis

If the SCA terminates, there exists a computable
rational a such that the worst-case length of an n-run of the SCA has size ©(n2).

Proof: We construct a BQghi automaton Aut as follows: 2 X=X’ D b XX’
Take as alphabet the transitions of the SCA. A Yy

Take as states of the automaton, the variables of the SCA + {T,1}. ¢

All states of the automaton are initial and final.

a:0, b:1

O ifthereisaguardx=vy’'ina
A(x,a,y) = { 1 ifthereisaguard x>y’ ina x /@ x
-co otherwise (no guard) % \*@
(A(L,?,7)=0, A(?,?,T)=0) 8 P v
(3 n-run of SCA of size s) \@
3 input word u of size s such that |
if and only it 1)-itis-a-value-free-valid-run-(regutar)
2) there is no run of Aut with weight >n.
One needs to find the asymptotic
i log |u
exponent of the size of the longest lim sup glul . ~ Decidable

word that is has only run of value weAx log Aut(|u|)
at most n:
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An unexpected
ohenomenon

For instance, & XZX’CI) o:x>x"  has worst-case complexity n2.
AY>Y Il

It was conjectured that the asymptotic worst-case could only have integer
exponent.

However: a: x>x' A Y=y A
The longest n-run of 257" A tst

the following SCA
has asymptotical

length ©(n2),

D:x>X" A yzy’ A y=z’ A
y>t' A z>t A St

C:y>Y Ay=zZ Ayt A
Z>Y' ANzZ2Z Azt A
>y’ A t=z' At




x =read_input(n);
y =read_input(n);
while (x> 0) {

void main(uint n) {
uint x,y;

if(y>0)

The size-change abstraction is good model for proving the s
termination of some forms of programs. This offers a natural
reduction to question of automata theory.

| We have shown that this technique can be greatly
a: XZX’CP:D o:x>x"  refined for computing asymptotic worst-case
AY>Y v complexity of some programs.
a:0, b:1
This relies on advanced results on the 8/'@\@
asymptotic analysis of tropical automata. \@/’



void main(uint n) {
uint x,y;

x =read_input(n);
y =read_input(n);
while (x> 0) {

if(y>0)

The size-change abstraction is good model for proving the e
termination of some forms of programs. This offers a natural
reduction to question of automata theory.

CLD We have shown that this technique can be greatly
D: x>x’

a: X=X’ P refined for computing asymptotic worst-case
AY>Y v complexity of some programs.
a:0, b:1
This relies on advanced results on the 8/'@\@
asymptotic analysis of tropical automata. \@/’
a:l

Some open questions

What is the exact complexity?
How to construct ranking functions”
|s there a more general model of automata and results?



Thanks !



