ETHzürich

Energy-Efficient Fast Delivery by Mobile Agents

Andreas Bärtschi

joint work with Thomas Tschager

ETH Department of Computer Science

Model of delivery

Setting

- undirected graph G = (V, E)with edges $e \in E$ having lengths ℓ_e
- one package: source s and target t
- k agents, each starting at a node p_i , energy consumption w_i & velocity v_i

Assumptions

- agents cooperate by global, centralized coordination
- handovers possible at nodes V as well as inside edges

Task

Find an efficient delivery in terms of energy consumption $\mathcal{E} \longrightarrow$ terms of form $w_i \cdot \ell_e$ delivery time $\mathcal{T} \longrightarrow$ terms of form $v_{i}^{-1} \cdot \ell_{P}$

FCT Bordeaux | September 13, 2017 | 2 / 11

Andreas Bärtschi

ETH zürich

1 Introduction

- Model of delivery
- Outline

2 Previous work

- Agents with weights only
- Agents with velocities only

3 Combining the two measures

- Combining energy- and time-efficiency
- OPT characterization
- Algorithm

Agents with weights

Each agent has its individual energy consumption (weight) w_i . Can we optimize the total energy consumption \mathcal{E} needed to deliver the package?

not on shortest path

vertex handovers

decreasing weights

[1] B., Chalopin, Das, Disser, Graf, Hackfeld, Penna: Energy-Efficient Delivery by Heterogeneous Mobile Agents

ETH Department of Computer Science Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 4 / 11

Agents with velocities

Each agent has its individual velocity v_i .

Can we *optimize* the total *time* \mathcal{T} needed to deliver the package?

not on shortest path (multiple) in-edge-handovers

increasing velocities

[2] B., Graf, Mihalák: Collective fast delivery by energy-efficient agents

ETH Department of Computer Science Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 5 / 11

Combining energy- and time-efficiency

Each agent has its individual weight w_i and velocity v_i . We want a delivery that is both efficient in its energy consumption and its delivery time:

- Fastest delivery among all energy-optimum ones.
 Task: lexicographically minimize (*E*, *T*).
- Energy-optimum delivery among all fastest ones.
 Task: lexicographically minimize (*T*, *E*).
- Tradeoff between the two measures. Task: minimize $\varepsilon \cdot \mathcal{T} + (1 - \varepsilon) \cdot \mathcal{E}, \ \varepsilon \in (0, 1).$

 \Rightarrow this talk

$$ightarrow$$
 $ightarrow$ NP-hard ^[2]

[2] B., Graf, Mihalák: Collective fast delivery by energy-efficient agents

ETH Department of Computer Science Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 6 / 11

Agents with weights and velocities

Each agent has its individual *weight* w_i and *velocity* v_i. Among all energy-optimum deliveries, can we find the fastest?

not on shortest path 0 or 1 in-edge-handovers decreasing tuples (w_i, v_i^{-1})

ETH Department of Computer Science

Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 7 / 11

Characterization of an optimum delivery

Theorem (OPT characterization)

There is an optimum delivery, with the involved agents denoted by $1, \ldots, i, i + 1, \ldots, k$, in which the following holds for each consecutive pair of agents:

• Decreasing weights: $w_i \ge w_{i+1}$.

• If
$$w_i = w_{i+1}$$
, then $v_i < v_{i+1}$.

• If $w_i = w_{i+1}$, then agent i + 1 does not move without the package.

$$\underbrace{w_1 = w_2 = \dots}_{W_1} \xrightarrow{>} x \underbrace{v_i < v_{i+1} < \dots}_{W_i = w_{i+1} = \dots} \xrightarrow{>} y \underbrace{\dots = w_k}_{W_3}$$

 \Rightarrow First look at the problem for each weight class W_i separately.

ETH Department of Computer Science Andreas

Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 8 / 11

ETH zürich

Uniform energy consumption weights

Example: 4 agents, weight 3, velocities v₁ = 1, v₂ = 2, v₃ = 4, v₄ = 5. Approach:
Move closest agent to source s. Costs (E, T)[p₁] = (3 ⋅ 3, 3/1) = (9, 3).
Order agents by increasing velocity. Transform graph to DAG. Compute (E, T)[p_i] = the energy consumption E[p_i] and delivery time T[p_i] of an optimum delivery of the package from s to p_i, using only agents 1,..., i - 1.

ETH Department of Computer Science Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 9 / 11

ETH zürich

Uniform energy consumption weights

Example: 4 agents, weight 3, velocities $v_1 = 1$, $v_2 = 2$, $v_3 = 4$, $v_4 = 5$. Approach: 1 Move closest agent to source *s*. Costs $(\mathcal{E}, \mathcal{T})[p_1] = (3 \cdot 3, 3/1) = (9, 3)$. 2 Order agents by increasing velocity. Transform graph to DAG. Compute

$$\begin{aligned} & (\mathcal{E}, \mathcal{T})[p_2] = (\mathcal{E}, \mathcal{T})[p_1] + (5 \cdot 3, 5/1) = (24, 8). \\ & (\mathcal{E}, \mathcal{T})[p_3] = \min\{(\mathcal{E}, \mathcal{T})[p_1] + (9 \cdot 3, 9/1), \ (\mathcal{E}, \mathcal{T})[p_2] + (4 \cdot 3, 4/2)\} = (36, 10). \\ & (\mathcal{E}, \mathcal{T})[p_4] = \min\{\dots, (\mathcal{E}, \mathcal{T})[p_2] + (4 \cdot 3, 4/2), \dots\} = (36, 10). \end{aligned}$$

3 Compute optimum *delivery time* among energy-optimum deliveries: $(\mathcal{E}, \mathcal{T}) = (66, 12)$. ETH Department of Computer Science Andreas Bärtschi FCT Bordeaux | September 13, 2017 | 9 / 11

Vertex handovers

If $w_i \neq 2w_{i+1}$, then agent i does not handover the package to i+1 inside an edge. Assume we have $w_i \neq 2w_i \ \forall i, j$.

 \Rightarrow We can use the precomputed weight class solutions. Define the subproblems

 $(\mathcal{E}, \mathcal{T})[j, y] =$ the energy consumption $\mathcal{E}[j, y]$ and delivery time $\mathcal{T}[j, y]$ of an optimum delivery of the package from s up to node y, using only agents from the first j weight classes W_1, \ldots, W_i .

 \Rightarrow We can compute $(\mathcal{E}, \mathcal{T})[j, y]$ from all smaller subproblems $(\mathcal{E}, \mathcal{T})[j-1, x]!$

In-edge handovers

We can have at most one in-edge-handover per edge.

But: Which agents are involved in an in-edge-handover?

Pareto frontier!

Adapt previous methods as follows:

Incorporate the Pareto frontier into the weight class computations.

Incorporate in-edge-handovers into the main dynamic program.

Running time:

- Preprocessing $\mathcal{O}(APSP + k + |V|)$.
 Per weight class: $\mathcal{O}(|V| \cdot k^2 + |V|^2 \cdot k)$.
 Main dynamic program: $\mathcal{O}(k \cdot |V| \cdot |V|)$.

ETH Department of Computer Science

Andreas Bärtschi

FCT Bordeaux | September 13, 2017 | 11 / 11