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Distributed Computing
in an unreliable environment

– Several interacting entities (players/agents) that cooperate
to achieve a common goal without central coordination.

– Players arranged in a communication network G .

– Adversarial Behavior: Corrupted players controlled by a
central active (Byzantine) adversary.

– Achieve goal despite the presence of corruptions.
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Reliable Communication

– Reliable Message Transmission (RMT) problem:
Correct delivery of message x from Sender S to Receiver R,
despite the existence of corrupted players.

(Sender’s input: x , Receiver’s output (decision): x)

S R

Incomplete Network
G = (V,E)

– Main result: Exact characterization of instances where
RMT is feasible (impossibility condition, matching algorithm)
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The Adversary
Corruption sets

– t-Global [Lamport, Shostak, Pease, ’82]:
At most t corruptions.

– t-Local [Koo, ’04]:
At most t corruptions in each neighborhood

– General Adversary [Hirt, Maurer, ’97]:
Defined by the monotone family of all possible corruption sets
Z ⊆ 2V (adversary structure).

At most t
corruptions
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Z1
Z2
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Initial knowledge of players

Partial knowledge model [Pagourtzis, Panagiotakos, Sakavalas, ’14]

– Topology knowledge: Player u knows subgraph

γ(u) = (Vu,Eu).

For set S ⊆ V , γ(S) = (
∪
u∈S

Vu,
∪
u∈S

Eu).

u

γ(u)

w

γ(w)

γ({u,w})

w
u

– Knowledge of the adversary structure:

Each player u knows only
the local adversary structure
Zu = {S ∩ Vu : S ∈ Z}
(also denoted as ZVu).
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The Model

Adversary

– Byzantine.

– General.

– Unbounded.

Network

– Arbitrary topology (aka incomplete).

– Synchronous.

– Authenticated channels (no tampering, known sender id).

Initial knowledge

– Partial knowledge over topology and adversary.

Safe RMT algorithms [Pelc, Peleg, ’05]

– Never make the receiver output (decide on) an incorrect value.
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Intuition behind RMT protocols

– Known Topology: R decides on x upon receiving x from
a set of S ⇝ R paths not fully “covered” by a corruptible set.

– Partial knowledge: Node v decides on x upon receipt
from a set of paths in γ(v) not “covered” by a corruptible set.

...
RS

x
x

x

G

Algorithm (GPPA) tight for local knowledge [PPS14]!
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Exchange of Knowledge

– GPPA not generally tight.

– Knowledge exchange helps in the general case.

... ...

Paths P contain an
adversary cover in γ(v)

v

γ(v)

Knowledge Exchange between v ,w

– Joining topology knowledge: trivially γ({v ,w})
– Joining local adversary structures Zv ,Zw?
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Joining Local Adversary Structures

ZA = {Z ∩ A | Z ∈ Z}.
For ZA,ZB , define (worst case) joint structure ZA ⊕ZB :

A B

Z1 Z2 – ZA ⊕ZB should contain Z1 ∪ Z2.

– ZA ⊕ZB should contain Z3 ∪ Z4.

– ZA ⊕ZB should not contain Z5 ∪ Z6.

.
Join Operation ⊕
..

.ZA⊕ZB = {Z1 ∪Z2|(Z1 ∈ ZA)∧ (Z2 ∈ ZB)∧ (Z1 ∩B = Z2 ∩A)}

Definition extends to different structures: ZA ⊕Z ′B

(false structure report by adversary).
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Semilattice structure of partial knowledge

.
Theorem
..

.

Let T = {ZA | Z ⊆ 2V ,A ⊆ V } the space of all possible ZA.
⟨T,⊕⟩ is a semilattice.

Proof. Operation ⊕ is commutative, associative, idempotent.
.
Semilattices facts
..

.

1. ⊕ induces a partial order “ ≽ ” on T by x ≽ y ⇔ x = x ⊕ y .

2. Every nonempty finite subset of T has a supremum w.r.t. ≽.
3. sup{x , y} = x ⊕ y (join).
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Semilattice structure of partial
knowledgetle

.
Theorem (Induced partial order)
..

.

Operation ⊕ induces partial order “ ≽ ” on T:

ZA ≽ Z ′B ⇔ (A ⊇ B) ∧
(
(ZA)B ⊆ Z ′B

)

A

B

ZA

Proof. By (1) and definition of ⊕.
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Maximality of ZA ⊕ZB

A B

Z1 Z2

Z

A B

Z ′

Z3

– ZA ⊕ZB : worst possible case compatible with local knowledge?
– Are there corruptible subsets of A∪B not included in ZA⊕ZB?
.
Theorem
..

.For structure Z and A,B ⊆ V , it holds that Z(A∪B) ⊆ ZA ⊕ZB .

Proof.

Z(A∪B) ≽ ZA,ZB

ZA ⊕ZB = sup{ZA,ZB}

}
⇒ Z(A∪B) ≽ ZA ⊕ZB ⇒ . . .

A. Pagourtzis, G. Panagiotakos, D. Sakavalas RMT under Partial Knowledge 12 / 19
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RMT cut

Joint Adversary Structure: Maximum possible adversary
structure w.r.t the initial knowledge of players in B.

ZB =
⊕
u∈B

ZVu

.
RMT cut
..

.

Node cut C = T ∪ H, cut of G , disconnecting S ∈ A from R ∈ B
s.t. T ∈ Z and H ∩ γ(B) ∈ ZB . (B: connected component)

A B

T

H
S R

– T is corruptible.

– H “looks” corruptible to B.
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RMT Impossibility

.
Theorem (Necessary condition for safe RMT)
..

.

If an RMT-cut exists for instance (G ,Z,S ,R) then no safe
algorithm A can achieve RMT in (G ,Z, S ,R).

* Safe Algorithm [Pelc, Peleg ’05]: Either R is sure for the sender’s
value or does not decide at all.
(roughly non-safe makes assumptions that might not hold.)
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Proof Sketch
(Conflicting indistinguishable executions)

Assume that a safe algorithm A achieves RMT in (G ,Z, S ,R)
with RMT cut C = T ∪ H. What about (G ,ZB , S ,R)?

S

T

A B
H

R

(G,Z, S, R)
Run r0

S

T

A B
H

R

(G,ZB, S, R)
Run r0

Corrupted players of ri act as honest in r1−i .

– Runs r0, r1, indistinguishable to the set of nodes B
(same joint knowledge and joint view).

– R decides on the same value 0 in both runs, thus A is not safe.
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RMT- Partial Knowledge Algorithm
.
RMT-PKA Outline
..

.

Propagation Phase

– Dealer’s value is propagated throughout the graph.

– Each player propagates its initial knowledge (γ(v),Zv ).

Decision Phase

– Identifies a “non-contradicting” set of messages M.

– Creates subgraph GM implied by messages M.

– Decides on value propagated by M if GM does not have an
adversary cover. (C ∩ γ(B) ∈ ZB)

xS R
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Optimal Resilience of RMT-PKA

.
Theorem (Safety)
..
.R will never decide on an incorrect value.

.
Theorem (Sufficiency of RMT-cut condition)
..
.RMT-PKA achieves RMT whenever an RMT-cut does not exist.

Non-existence of an RMT-cut is a necessary and sufficient
condition for achieving RMT
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Open Questions

– Efficiency study for RMT in the partial knowledge model.
(Efficient algorithm known only for the t-local model under
local knowledge.)

– Resilience measures and approximation.
(Existence of an RMT cut is NP-hard to check.)

– Privacy requirements in partial knowledge models (SMT).
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Thank you!
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